OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2584–2588

Large-area omnidirectional antireflection coating on low-index materials

Ping-Chun Li and Edward T. Yu  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2584-2588 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002584


View Full Text Article

Enhanced HTML    Acrobat PDF (725 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-area subwavelength dielectric hexagonal lattices of cylindrical pillars on quartz substrates that provide high optical transmittance at all angles of incidence under different polarizations of light, and are fabricated using low-cost patterning techniques, are demonstrated and analyzed. Transmittance >85% for angles of incidence in excess of 70° is demonstrated at visible and near-infrared wavelengths, and the structures employed are shown to be superior at visible wavelengths to tapered “moth eye” surfaces for practically achievable dimensions. Detailed analytical calculations and numerical simulations elucidating the impact of feature size, height, periodicity, and refractive index are presented.

© 2013 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Diffraction and Gratings

History
Original Manuscript: May 1, 2013
Revised Manuscript: July 10, 2013
Manuscript Accepted: August 8, 2013
Published: September 4, 2013

Citation
Ping-Chun Li and Edward T. Yu, "Large-area omnidirectional antireflection coating on low-index materials," J. Opt. Soc. Am. B 30, 2584-2588 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41, 3075–3083 (2002). [CrossRef]
  2. H. A. Macleod, Thin-Film Optical Filters (CRC Press, 2010).
  3. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1, 176–179 (2007).
  4. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008). [CrossRef]
  5. R. E. Welser, A. W. Sood, G. G. Pethuraja, A. K. Sood, Y. Xing, D. J. Poxson, C. Jaehee, E. F. Schubert, and J. L. Harvey, “Broadband nanostructured antireflection coating on glass for photovoltaic applications,” in 38th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2012), p. 003339.
  6. J.-Y. Cho, K.-J. Byeon, and H. Lee, “Forming the graded-refractive-index antireflection layers on light-emitting diodes to enhance the light extraction,” Opt. Lett. 36, 3203–3205 (2011). [CrossRef]
  7. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007). [CrossRef]
  8. P. Menna, G. Di Francia, and V. La Ferrara, “Porous silicon in solar cells: a review and a description of its application as an AR coating,” Solar Energy Mater. Solar Cells 37, 13–24 (1995). [CrossRef]
  9. W. Theiß, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997). [CrossRef]
  10. C. C. Striemer and P. M. Fauchet, “Dynamic etching of silicon for broadband antireflection applications,” Appl. Phys. Lett. 81, 2980–2982 (2002). [CrossRef]
  11. J. Y. Chen and K. W. Sun, “Nanostructured thin films for anti-reflection applications,” Thin Solid Films 519, 5194–5198 (2011). [CrossRef]
  12. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93, 133108 (2008). [CrossRef]
  13. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the moth eye principle,” Nature 244, 281–282 (1973). [CrossRef]
  14. K.-C. Park, H. J. Choi, C.-H. Chang, R. E. Cohen, G. H. McKinley, and G. Barbastathis, “Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity,” ACS Nano 6, 3789–3799 (2012). [CrossRef]
  15. N. Yamada, T. Ijiro, E. Okamoto, K. Hayashi, and H. Masuda, “Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module,” Opt. Express 19, A118–A125 (2011). [CrossRef]
  16. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001). [CrossRef]
  17. H. Deniz, T. Khudiyev, F. Buyukserin, and M. Bayindir, “Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces,” Appl. Phys. Lett. 99, 183107 (2011). [CrossRef]
  18. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102, 103105 (2007). [CrossRef]
  19. Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008). [CrossRef]
  20. J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Colloids Surf. A 219, 1–6 (2003). [CrossRef]
  21. C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, “Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,” ACS Appl. Mater. Interfaces 3, 204–208 (2011). [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  23. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 39, L735–L737 (2000). [CrossRef]
  24. M. Chen, H.-C. Chang, A. S. P. Chang, S.-Y. Lin, J. Q. Xi, and E. F. Schubert, “Design of optical path for wide-angle gradient-index antireflection coatings,” Appl. Opt. 46, 6533–6538 (2007). [CrossRef]
  25. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991). [CrossRef]
  26. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993). [CrossRef]
  27. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings,” J. Opt. Soc. Am. A 11, 2695–2703 (1994). [CrossRef]
  28. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995). [CrossRef]
  29. L. Tsakalakos, Y. A. Xi, B. A. Korevaar, T. R. Tolliver, and D. Zhong, “Nanostructured anti-reflection coatings and associated methods and devices,” U.S. patent application2010/0259823 A1 (October14, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited