OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2589–2598

Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface

Andrey B. Evlyukhin, Carsten Reinhardt, Egor Evlyukhin, and Boris N. Chichkov  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2589-2598 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical approach, based on the discrete dipole approximation, for multipole analysis of light scattering by arbitrary-shaped nanoparticles located near or on a plane surface is presented. The obtained equations include the first multipoles up to the magnetic quadrupole and electric octupole moments. It is discussed how the suggested approach can be applied to the problem of multipole scattering of surface plasmon polaritons. As an example, the theoretical framework is used for investigation of light scattering by cylindrical Si nanoparticles located on different dielectric substrates, manifesting resonant interaction of these particles with light.

© 2013 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(290.0290) Scattering : Scattering
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: July 9, 2013
Revised Manuscript: August 13, 2013
Manuscript Accepted: August 13, 2013
Published: September 4, 2013

Andrey B. Evlyukhin, Carsten Reinhardt, Egor Evlyukhin, and Boris N. Chichkov, "Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface," J. Opt. Soc. Am. B 30, 2589-2598 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004). [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  4. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance based dielectric metamaterial,” Mater. Today 12(12), 60–69 (2009). [CrossRef]
  5. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  6. V. Giannini, A. I. Fernández-Domnguez, S. C. Heck, and S. A. Maier, “Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters,” Chem. Rev. 111, 3888–3912 (2011). [CrossRef]
  7. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012). [CrossRef]
  8. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012). [CrossRef]
  9. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012). [CrossRef]
  10. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012). [CrossRef]
  11. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012). [CrossRef]
  12. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011). [CrossRef]
  13. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express 18, 11428–11443 (2010). [CrossRef]
  14. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970). [CrossRef]
  15. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  16. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B 43, 102001 (2010). [CrossRef]
  17. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011). [CrossRef]
  18. E. H. Brandt, “Levitation in physics,” Science 243, 349–355 (1989). [CrossRef]
  19. L. Shi, E. Xifré-Pérez, F. J. Garca de Abajo, and F. Meseguer, “Looking through the mirror: optical microcavity-mirror image photonic interaction,” Opt. Express 20, 11247–11255 (2012). [CrossRef]
  20. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010). [CrossRef]
  21. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  22. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]
  23. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012). [CrossRef]
  24. M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ASC Nano 6, 6462–6470 (2012). [CrossRef]
  25. C. Rockstuhl, C. Menzel, S. Mühlig, J. Petschulat, C. Helgert, C. Etrich, A. Chipouline, T. Pertsch, and F. Lederer, “Scattering properties of metaatoms,” Phys. Rev. B 83, 245119 (2011). [CrossRef]
  26. C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011). [CrossRef]
  27. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  28. C. Hafner and G. Klaus, “Application of the multiple multipole (MMP) method to electrodynamics,” Int. J. Comp. Math. Elect. Electron. Eng. 4, 137–144 (1985). [CrossRef]
  29. M. Paulus and O. J. F. Martin, “Light propagation and scattering in stratified media: a Green’s tensor approach,” J. Opt. Soc. Am. A 18, 854–861 (2001). [CrossRef]
  30. E. Eremina, Y. Eremin, and T. Wriedt, “Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method,” Opt. Commun. 267, 524–529 (2006). [CrossRef]
  31. V. Myroshnychenko, J. Rodrguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. Garca de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008). [CrossRef]
  32. T. T. Søndergaard, “Modeling of plasmonic nanostructures: Green’s function integral equation methods,” Phys. Status Solidi B 244, 3448–3462 (2007). [CrossRef]
  33. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011). [CrossRef]
  34. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  35. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  36. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007). [CrossRef]
  37. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  38. T. Søndergaard and S. I. Bozhevolnyi, “Surface plasmon polariton scattering by a small particle placed near a metal surface: an analytical study,” Phys. Rev. B 69, 045422 (2004). [CrossRef]
  39. A. B. Evlyukhin, G. Brucoli, L. Martn-Moreno, S. I. Bozhevolnyi, and F. J. Garca-Vidal, “Surface plasmon polariton scattering by finite-size nanoparticles,” Phys. Rev. B 76, 075426 (2007). [CrossRef]
  40. C. H. Papas, Theory of Electromagnetic Wave Propagation (Dover, 1988).
  41. R. E. Raab and O. L. de Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).
  42. P. Mazur and B. R. A. Nijboer, “On the statistical mechanics of matter in an lectromagnetic field. I,” Physica 19, 971–986 (1953). [CrossRef]
  43. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012). [CrossRef]
  44. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010). [CrossRef]
  45. L. Novotny, B. Hecht, and D. W. Pohl, “Interference of locally excited surface plasmons,” J. Appl. Phys. 81, 1798–1806 (1997). [CrossRef]
  46. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000). [CrossRef]
  47. Z. Li, B. Gu, and G. Yang, “Modified self-consistent approach applied in near-field optics for mesoscopic surface defects,” Phys. Rev. B 55, 10883–10894 (1997). [CrossRef]
  48. E. Palik, Handbook of Optical Constant of Solids (Academic, 1985).
  49. G. Gantzounis, “Plasmon modes of axisymmetric metallic nanoparticles: a group theory analysis,” J. Phys. Chem. C 11321560–21565 (2009). [CrossRef]
  50. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9, 2188–2192 (2009). [CrossRef]
  51. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657–1663 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited