OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2615–2620

Absorbing boundary condition for Bloch–Floquet eigenmodes

Chris Fietz  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2615-2620 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002615


View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an absorbing boundary condition for electromagnetic frequency domain simulations of photonic crystals and metamaterials. This boundary condition can simultaneously absorb multiple Bloch–Floquet eigenmodes of a periodic crystal, including both propagating and evanescent modes. The photonic crystal or metamaterial in question can include lossy, active, anisotropic, and even bi-anisotropic inclusions. The absorbing boundary condition is dependent on an orthogonality condition for Bloch–Floquet eigenmodes, a generalized version of which is presented here. We test this absorbing boundary condition numerically and present the results.

© 2013 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(130.5296) Integrated optics : Photonic crystal waveguides
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: May 28, 2013
Revised Manuscript: August 14, 2013
Manuscript Accepted: August 14, 2013
Published: September 5, 2013

Citation
Chris Fietz, "Absorbing boundary condition for Bloch–Floquet eigenmodes," J. Opt. Soc. Am. B 30, 2615-2620 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2615


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999). [CrossRef]
  2. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  3. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  4. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002), Chap. 9.6.
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef]
  6. Y. Tsuji and M. Koshiba, “Finite element method using port truncation by perfectly matched layer boundary conditions for optical waveguide discontinuity problems,” J. Lightwave Technol. 20, 463–468 (2002). [CrossRef]
  7. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. 11, 152–154 (2001). [CrossRef]
  8. E. P. Kosmidou, T. I. Kosmanis, and T. D. Tsiboukis, “A comparative FDTD study of various PML configurations for the termination of nonlinear photonic bandgap waveguide structures,” IEEE Trans. Magn. 39, 1191–1194 (2003). [CrossRef]
  9. A. Weily, L. Horbath, K. P. Esselle, and B. C. Sanders, “Performance of PML absorbing boundary conditions in 3D photonic crystal waveguides,” Microw. Opt. Technol. Lett. 40, 1–3 (2004). [CrossRef]
  10. A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376–11392 (2008). [CrossRef]
  11. M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011). [CrossRef]
  12. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002), Chap. 11.1.1.
  13. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  14. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljaičić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001). [CrossRef]
  15. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannoppoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002). [CrossRef]
  16. M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, and Y. Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” J. Opt. Soc. Am. B 19, 2867–2875 (2002). [CrossRef]
  17. D. Michaelis, U. Peschel, C. Waechter, and A. Braeuer, “Coupling coefficients of photonic crystal waveguides,” Proc. SPIE 4987, 114–125 (2003). [CrossRef]
  18. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: an analytic approach,” Phys. Rev. B 82, 235306 (2010). [CrossRef]
  19. M. Davanco, Y. Urzhumov, and G. Shvets, “The complex bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007). [CrossRef]
  20. C. Fietz, Y. Urzhumov, and G. Shvets, “Complex k band diagrams of 3D metamaterial/photonic crystals,” Opt. Express 19, 19027–19041 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited