## Single-photon time-dependent spectra in coupled cavity arrays |

JOSA B, Vol. 30, Issue 10, pp. 2640-2649 (2013)

http://dx.doi.org/10.1364/JOSAB.30.002640

Enhanced HTML Acrobat PDF (877 KB)

### Abstract

We show how the input–output formalism for cascaded quantum systems combined with the quantum trajectory approach yields a compact and physically intuitive description of single photons propagating through a coupled cavity array. As a new application, we obtain the time-dependent spectrum of such a single photon, which directly reflects the fact that only certain frequency components of single-photon wavepackets are trapped inside the cavities and hence are delayed in time. We include in our description the actual generation of the single photon, by assuming we have a single emitter in one of the resonators.

© 2013 Optical Society of America

**OCIS Codes**

(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

(210.0210) Optical data storage : Optical data storage

(270.0270) Quantum optics : Quantum optics

(270.5565) Quantum optics : Quantum communications

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 16, 2013

Revised Manuscript: August 7, 2013

Manuscript Accepted: August 16, 2013

Published: September 11, 2013

**Citation**

Imran M. Mirza, S. J. van Enk, and H. J. Kimble, "Single-photon time-dependent spectra in coupled cavity arrays," J. Opt. Soc. Am. B **30**, 2640-2649 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2640

Sort: Year | Journal | Reset

### References

- A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
- J. E. Heebner, R. W. Boyd, and Q. H. Park, “Scissor solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002). [CrossRef]
- J. E. Heebner and R. W. Boyd, “Slow and stopped light ‘slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002). [CrossRef]
- J. Scheuer, G. T. Paloczi, J. K. S. Poon, and A. Yariv, “Coupled resonator optical waveguides: toward the slowing and storage of light,” Opt. Photon. News 16(2), 36–40 (2005). [CrossRef]
- T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
- T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
- J. T. Shen and S. Fan, “Coherent photon transport from spontaneous emission in one-dimensional waveguides,” Opt. Lett. 30, 2001–2003 (2005). [CrossRef]
- J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom,” Phys. Rev. A 79, 023837 (2009). [CrossRef]
- J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom,” Phys. Rev. A 79, 023838 (2009). [CrossRef]
- E. Rephaeli and S. Fan, “Stimulated emission from a single excited atom in a waveguide,” Phys. Rev. Lett. 108, 143602 (2012). [CrossRef]
- W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters based on entanglement purification,” Phys. Rev. A 59, 169–181 (1999). [CrossRef]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
- C. Santori, J. V. David Fattal, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]
- A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 67901 (2002). [CrossRef]
- J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303, 1992–1994 (2004). [CrossRef]
- D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef]
- J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One-and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol. 7, 69–74 (2011). [CrossRef]
- H. J. Carmichael, “Quantum trajectory theory for cascaded open systems,” Phys. Rev. Lett. 70, 2273–2276 (1993). [CrossRef]
- C. W. Gardiner, “Driving a quantum system with the output field from another driven quantum system,” Phys. Rev. Lett. 70, 2269–2272 (1993). [CrossRef]
- C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, 2004), Vol. 56.
- P. Zoller, M. Marte, and D. F. Walls, “Quantum jumps in atomic systems,” Phys. Rev. A 35, 198–207 (1987). [CrossRef]
- H. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).
- R. Dum, A. S. Parkins, P. Zoller, and C. W. Gardiner, “Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs,” Phys. Rev. A 46, 4382–4396 (1992). [CrossRef]
- K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quantum optics,” J. Opt. Soc. Am. B 10, 524–538 (1993). [CrossRef]
- M. B. Plenio and P. L. Knight, “The quantum-jump approach to dissipative dynamics in quantum optics,” Rev. Mod. Phys. 70, 101–144 (1998). [CrossRef]
- L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
- A. Aspect, G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-Tannoudji, “Time correlations between the two sidebands of the resonance fluorescence triplet,” Phys. Rev. Lett. 45, 617–620 (1980). [CrossRef]
- J. H. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” J. Opt. Soc. Am. 67, 1252–1261 (1977). [CrossRef]
- B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]
- This is a recent experiment in the single-photon regime using a single atom inside a single cavity, where the nonlinearity introduced by the presence of the atom is exploited to change an incoming laser beam of light (with Poissonian photon-number statistics) into reflected light that is antibunched, characteristic of single photons.
- C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985). [CrossRef]
- G. Cui and M. G. Raymer, “Emission spectra and quantum efficiency of single-photon sources in the cavity-qed strong-coupling regime,” Phys. Rev. A 73, 053807 (2006). [CrossRef]
- A. Auffèves, B. Besga, J.-M. Gérard, and J.-P. Poizat, “Spontaneous emission spectrum of a two-level atom in a very-high-q cavity,” Phys. Rev. A 77, 063833 (2008). [CrossRef]
- L. Tian and H. J. Carmichael, “Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992). [CrossRef]
- M. Havukainen and S. Stenholm, “An open-systems approach to calculating time-dependent spectra,” J. Mod. Opt. 45, 1699–1716 (1998). [CrossRef]
- H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 2007), Vol. 2.
- H. J. Carmichael, R. J. Brecha, M. G. Raizen, H. J. Kimble, and P. R. Rice, “Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators,” Phys. Rev. A 40, 5516–5519 (1989). [CrossRef]
- J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
- J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2008), Vol. 140.
- C. R. Otey, M. L. Povinelli, and S. Fan, “Completely capturing light pulses in a few dynamically tuned microcavities,” J. Lightwave Technol. 26, 3784–3793 (2008). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1. |
Fig. 2. |
Fig. 3. |

Fig. 4. |
Fig. 5. |
Fig. 6. |

Fig. 7. |
Fig. 8. |
Fig. 9. |

Fig. 10. |
Fig. 11. |
Fig. 12. |

« Previous Article | Next Article »

OSA is a member of CrossRef.