OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2650–2656

Terahertz electro-optical detection: optical phase or energy measurements

S. P. Kovalev and G. Kh. Kitaeva  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2650-2656 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002650


View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Models of different available single-photodetector electro-optic sampling schemes are considered from the unified theoretical position. It is taken into account that under electro-optic terahertz wave detection, not only do the polarization states of the femtosecond optical pulse components change but the modules of their amplitudes are also varied. As a result, information concerning the terahertz wave can be obtained not only using the conventional ellipsometry readout scheme (probe-phase sampling) but also by simple measuring of the induced power of the optical pulses (probe-energy sampling). Spectral sensitivities of both of these electro-optic sampling methods are calculated for the cases of nonlinear-optical crystals with zinc-blende symmetry (like ZnTe) and the crystals with one active component of the second-order optical susceptibility tensor (like PPLN). It is found that the ratio between spectral sensitivities of the pure probe-phase and pure probe-energy schemes is proportional to the ratio between the optical and terahertz wave frequencies in all types of the crystals. It is shown that the signal in the near-zero optical transmission point scheme, which is the best for terahertz imaging, has a mixed character. While the contribution of the probe-phase sensitivity appears to be due to spatially nonuniform residual birefringence of the nonlinear zinc-blende crystal, the probe-energy part of the sensitivity has a uniform distribution and can be increased by the angle misalignment of the optical polarization element.

© 2013 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 14, 2013
Revised Manuscript: July 9, 2013
Manuscript Accepted: August 15, 2013
Published: September 12, 2013

Citation
S. P. Kovalev and G. Kh. Kitaeva, "Terahertz electro-optical detection: optical phase or energy measurements," J. Opt. Soc. Am. B 30, 2650-2656 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2650


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Dienst, M. C. Hoffmann, D. Fausti, J. C. Petersen, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, “Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor,” Nat. Photonics 5, 485–488 (2011). [CrossRef]
  2. L. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics 4, 627–631 (2010). [CrossRef]
  3. J. Federici and L. Moeller, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” J. Appl. Phys. 107, 111101 (2010). [CrossRef]
  4. S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, “Terahertz material detection from diffuse surface scattering,” J. Appl. Phys. 109, 094902 (2011). [CrossRef]
  5. F. Sizov, “THz radiation sensors,” Opto-Electron. Rev. 18, 10–36 (2010).
  6. J. Chen, P. Han, and X. C. Zhang, “Terahertz-field-induced second harmonic generation in beta barium borate crystal and its application in terahertz detection,” Appl. Phys. Lett. 95, 011118 (2009). [CrossRef]
  7. D. H. Auston and A. M. Glass, “Optical generation of intense picosecond electrical pulses,” Appl. Phys. Lett. 20, 398–399 (1972). [CrossRef]
  8. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982). [CrossRef]
  9. Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). [CrossRef]
  10. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996). [CrossRef]
  11. A. Nahata, D. H. Auston, T. F. Heinz, and C. J. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996). [CrossRef]
  12. Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68, 1604–1606 (1996). [CrossRef]
  13. C. Winnewisser, P. U. Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997). [CrossRef]
  14. Q. Wu and X.-C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997). [CrossRef]
  15. S. Park, M. R. Melloch, and A. M. Weiner, “Comparison of terahertz waveforms measured by electro-optic and photoconductive sampling,” Appl. Phys. Lett. 73, 3184–3186 (1998). [CrossRef]
  16. P. Y. Han and X. C. Zhang, “Coherent, broadband midinfrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998). [CrossRef]
  17. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191–3193 (2000). [CrossRef]
  18. K. Reimann, R. P. Smith, A. M. Weiner, T. Elsaesser, and M. Woerner, “Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter,” Opt. Lett. 28, 471–473 (2003). [CrossRef]
  19. B. Pradarutti, G. Matthäus, S. Riehemann, G. Notni, J. Limpert, S. Nolte, and A. Tünnermann, “Electro-optical sampling of ultrashort THz pulses by fs-laser pulses at 530 nm with BaTiO3,” J. Appl. Phys. 102, 093105 (2007). [CrossRef]
  20. M. Tani, K. Horita, T. Kinoshita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, “Efficient electro-optic sampling detection of terahertz radiation via Cherenkov phase matching,” Opt. Express 19, 19901–19906 (2011). [CrossRef]
  21. G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova, “Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification,” J. Opt. Soc. Am. B 23, 81–89 (2006). [CrossRef]
  22. J. Shan, A. S. Weling, E. Knoesel, M. Bonn, G. A. Reider, L. Bartels, and T. F. Heinz, “Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling,” Opt. Lett. 25, 426–428 (2000). [CrossRef]
  23. S. Wang and X.-C. Zhang, “Tomographic imaging with a terahertz binary lens,” Appl. Phys. Lett. 82, 1821–1823 (2003). [CrossRef]
  24. Y. Kawada, T. Yasuda, A. Nakanishi, H. Takahashi, and S. Aoshima, “Single-shot measurement of terahertz temporal waveform using pulse-front tilting by a direct vision dispersion prism,” Rev. Sci. Instrum. 80, 113703 (2009).
  25. K. Maruyama, N. Itani, S.-Y. Hasegawa, and S. Wakana, “High-speed terahertz spectroscopic imaging using noncollinear electro-optic sampling and a multistep mirror,” Opt. Express 19, 17738–17749 (2011). [CrossRef]
  26. Z. Jiang, F. G. Sun, Q. Chen, and X.-C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999). [CrossRef]
  27. M. Usami, M. Yamashita, K. Fukushima, C. Otani, and K. Kawase, “Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique,” Appl. Phys. Lett. 86, 141109 (2005). [CrossRef]
  28. T. Hattori and M. Sakamoto, “Deformation corrected real-time terahertz imaging,” Appl. Phys. Lett. 90, 261106 (2007). [CrossRef]
  29. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999). [CrossRef]
  30. S. P. Jamison, A. M. MacLeod, G. Berden, D. A. Jaroszynski, and W. A. Gillespie, “Temporally resolved electro-optic effect,” Opt. Lett. 31, 1753–1755 (2006). [CrossRef]
  31. B. Yellampalle, K.-Y. Kim, J. H. Glownia, and A. J. Taylor, “Comment on temporally resolved electro-optic effect,” Opt. Lett. 32, 1341–1342 (2007). [CrossRef]
  32. S. P. Jamison, A. M. MacLeod, G. Berden, D. A. Jaroszynski, and W. A. Gillespie, “Reply to comment on temporally resolved electro-optic effect,” Opt. Lett. 32, 1343–1344 (2007). [CrossRef]
  33. J. Darmo, M. Martl, and K. Unterrainer, “Quasi phase-matched terahertz detector,” Electron. Lett. 46, 788–790 (2010). [CrossRef]
  34. G. Kh. Kitaeva, S. P. Kovalev, I. I. Naumova, R. A. Akhmedzhanov, I. E. Ilyakov, B. V. Shishkin, and E. V. Suvorov, “Quasi-phase-matched probe-energy electro-optic sampling as a method of narrowband terahertz detection,” Appl. Phys. Lett. 96, 071106 (2010). [CrossRef]
  35. S. P. Kovalev and G. Kh. Kitaeva, “Two alternative approaches to electro-optical detection of terahertz pulses,” JETP Lett. 94, 91–96 (2011). [CrossRef]
  36. G. Kh. Kitaeva, S. P. Kovalev, I. I. Naumova, R. A. Akhmedzhanov, I. E. Ilyakov, B. V. Shishkin, and E. V. Suvorov, “A new method of terahertz detection: probe-energy electro-optic sampling,” in Proceedings of the 35th International Conference on Infrared Millimeter and Terahertz Waves (IEEE, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited