OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2657–2664

Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides

Christopher G. Poulton, Ravi Pant, and Benjamin J. Eggleton  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2657-2664 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002657


View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examine the effect of acoustic mode confinement on stimulated Brillouin scattering (SBS) in optical waveguides that consist of a guiding core embedded in a solid substrate. We find that SBS can arise due to coupling to acoustic modes in three different regimes. First, the acoustic modes may be guided by total internal reflection; in this case, the SBS gain depends directly on the degree of confinement of the acoustic mode in the core, which is in turn determined by the acoustic V parameter. Second, the acoustic modes may be leaky but may nevertheless have a sufficiently long lifetime to have a large effect on the SBS gain; the lifetime of acoustic modes in this regime depends not only on the contrast in acoustic properties between the core and the cladding but is also highly dependent on the waveguide dimensions. Finally, SBS may occur due to coupling to free modes, which exist even in the absence of acoustic confinement; we find that the cumulative effect of coupling to these nonconfined modes results in significant SBS gain. We show how the different acoustic properties of core and cladding lead to these different regimes and discuss the feasibility of SBS experiments using different material systems.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 30, 2013
Revised Manuscript: August 17, 2013
Manuscript Accepted: August 20, 2013
Published: September 12, 2013

Citation
Christopher G. Poulton, Ravi Pant, and Benjamin J. Eggleton, "Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides," J. Opt. Soc. Am. B 30, 2657-2664 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2003).
  2. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010). [CrossRef]
  3. G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, “Stimulated optomechanical excitation of surface acoustic waves in a microdevice,” Nat. Commun. 2, 403–408 (2011). [CrossRef]
  4. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012). [CrossRef]
  5. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering.” Opt. Express 19, 8285–8290 (2011). [CrossRef]
  6. P. Dainese, P. S. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006). [CrossRef]
  7. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18, 22599–22613 (2010). [CrossRef]
  8. A. Byrnes, R. Pant, E. Li, D. Y. Choi, C. G. Poulton, S. Fan, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20, 18836–18845 (2012). [CrossRef]
  9. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011). [CrossRef]
  10. F. Gao, R. Pant, E. Li, C. G. Poulton, D.-Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation,” Opt. Express 21, 8605–8613 (2013). [CrossRef]
  11. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008). [CrossRef]
  12. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012). [CrossRef]
  13. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” IEEE J. Lightwave Technol. 29, 2267–2275 (2011). [CrossRef]
  14. C. G. Poulton, R. Pant, A. Byrnes, S. Fan, M. J. Steel, and B. J. Eggleton, “Design for broadband on-chip isolator using stimulated Brillouin scattering in dispersion-engineered chalcogenide waveguides,” Opt. Express 20, 21235–21246 (2012). [CrossRef]
  15. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012). [CrossRef]
  16. P. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012). [CrossRef]
  17. H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, and P. T. Rakich, “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun. 4, 1944 (2013). [CrossRef]
  18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  19. A. Kobyakov, M. Sauer, and D. Chowdhury, “Stimulated Brillouin scattering in optical fibers,” Adv. Opt. Photon. 59, 1–59 (2010). [CrossRef]
  20. B. A. Auld, Acoustic Fields and Waves in Solids, 1st ed. (Wiley, 1973), Vol. 2.
  21. A. Brenn, G. S. Wiederhecker, M. S. Kang, H. Hundertmark, N. Joly, and P. S. J. Russell, “Influence of air-filling fraction on forward Raman-like scattering by transversely trapped acoustic resonances in photonic crystal fibers,” J. Opt. Soc. Am. B 26, 1641–1648 (2009). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  23. P. D. Dragic, “Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fiber,” J. Opt. Soc. Am. B 26, 1614–1620 (2009). [CrossRef]
  24. B. Ward and J. Spring, “Finite element analysis of Brillouin gain in SBS-suppressing optical fibers with nonuniform acoustic velocity profiles,” Opt. Express 17, 15685–15699 (2009). [CrossRef]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J 43, 1783–1809 (1964). [CrossRef]
  26. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006). [CrossRef]
  27. K. Ogusu, H. Li, and M. Kitao, “Brillouin-gain coefficients of chalcogenide glasses,” J. Opt. Soc. Am. B 21, 1302–1304 (2004). [CrossRef]
  28. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microw. Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited