OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2689–2695

Generation and analysis of hyperentangled multiqubit states for photons using quantum-dot spins in optical microcavities

Tie-Jun Wang and Chuan Wang  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2689-2695 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002689


View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme for the generation of hyperentangled multiqubit cluster states and Greenberger–Horne–Zeilinger states in both polarization and spatial mode degrees of freedom using the quantum-dot cavity system. This device can be used as the complete analyzer of hyperentangled multiphoton states. This proposed hyperentanglement generation and analyzer device can serve as a crucial component of high capacity, long-distance quantum communication. Using existing experimental data, it is demonstrated that the present scheme may be feasible in strong-coupling regimes with current techniques.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 24, 2013
Revised Manuscript: August 29, 2013
Manuscript Accepted: August 30, 2013
Published: September 24, 2013

Citation
Tie-Jun Wang and Chuan Wang, "Generation and analysis of hyperentangled multiqubit states for photons using quantum-dot spins in optical microcavities," J. Opt. Soc. Am. B 30, 2689-2695 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2689


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett. 86, 5188–5191 (2001). [CrossRef]
  2. J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, “Distributed quantum computation over noisy channels,” Phys. Rev. A 59, 4249–4254 (1999). [CrossRef]
  3. C. H. Bennett, G. Crépeau, C. Brassard, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  4. M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “Event-ready-detectors Bell experiment via entanglement swapping,” Phys. Rev. Lett. 71, 4287–4290 (1993). [CrossRef]
  5. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
  6. X. S. Liu, G. L. Long, D. M. Tong, and F. Li, “General scheme for super dense coding between multiparties,” Phys. Rev. A 65, 022304 (2002). [CrossRef]
  7. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999). [CrossRef]
  8. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A 59, 162–168 (1999). [CrossRef]
  9. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004). [CrossRef]
  10. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  11. L. Vaidman and N. Yoran, “Methods for reliable teleportation,” Phys. Rev. A 59, 116–125 (1999). [CrossRef]
  12. N. Lütkenhaus, J. Calsamiglia, and K. A. Suominen, “On Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999). [CrossRef]
  13. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
  14. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005). [CrossRef]
  15. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
  16. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef]
  17. A. Vaziri, G. Weihs, and A. Zeilinger, “Experimental two-photon, three-dimensional entanglement for quantum communication,” Phys. Rev. Lett. 89, 240401 (2002). [CrossRef]
  18. S. P. Walborn, S. Pádua, and C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003). [CrossRef]
  19. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006). [CrossRef]
  20. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, “Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement,” Phys. Rev. A 75, 042317 (2007). [CrossRef]
  21. K. Nemoto and W. J. Munro, “A near deterministic linear optical CNOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  22. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems,” Eur. Phys. J. D 67, 30–37 (2013). [CrossRef]
  23. D. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1142 (1990). [CrossRef]
  24. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett. 86, 910–913 (2001). [CrossRef]
  25. D. Schlingemann and R. Werner, “Quantum error-correcting codes associated with graphs,” Phys. Rev. A 65, 012308 (2001). [CrossRef]
  26. M. Varnava, D. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006). [CrossRef]
  27. E. Jung, M. R. Hwang, H. JuYou, M. S. Kim, S. K. Yoo, H. Kim, D. Park, J. W. Son, S. Tamaryan, and S. K. Cha, “Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels,” Phys. Rev. A 78, 012312 (2008). [CrossRef]
  28. Y.-A. Chen, A.-N. Zhang, Z. Zhao, X.-Q. Zhou, C.-Y. Lu, C.-Z. Peng, T. Yang, and J.-W. Pan, “Experimental quantum secret sharing and third-man quantum cryptography,” Phys. Rev. A 95, 200502 (2005).
  29. S. Bose, V. Vedral, and P. L. Knight, “Multiparticle generalization of entanglement swapping,” Phys. Rev. A 57, 822–829 (1998). [CrossRef]
  30. M. M. Wilde and D. B. Uskov, “Linear-optical hyperentanglement-assisted quantum error-correcting code,” Phys. Rev. A 79, 022305 (2009). [CrossRef]
  31. D. Bruss and C. Macchiavello, “Optimal eavesdropping in cryptography with three-dimensional quantum states,” Phys. Rev. Lett. 88, 127901 (2002). [CrossRef]
  32. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
  33. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  34. W. J. Munro, A. M. Stephens, S. J. Devitt, K. A. Harrison, and K. Nemoto, “Quantum communication without the necessity of quantum memories,” Nat. Photonics 6, 777–781 (2012). [CrossRef]
  35. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]
  36. C. Y. Lu, T. Yang, and J. W. Pan, “Experimental multiparticle entanglement swapping for quantum networking,” Phys. Rev. Lett. 103, 020501 (2009). [CrossRef]
  37. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  38. Y. Xia, Q.-Q. Chen, J. Song, and H.-S. Song, “Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity,” J. Opt. Soc. Am. 29, 1029–1037 (2012). [CrossRef]
  39. J. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]
  40. J. Gea-Banacloche, “Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets,” Phys. Rev. A 81, 043823 (2010). [CrossRef]
  41. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003). [CrossRef]
  42. V. Zwiller, T. Aichele, F. Hatami, W. T. Masselink, and O. Benson, “Growth of single quantum dots on preprocessed structures: single photon emitters on a tip,” Appl. Phys. Lett. 86, 091911 (2005). [CrossRef]
  43. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000). [CrossRef]
  44. G. Chen, C. F. Li, Z. Q. Yin, Y. Zou, L. X. He, and G. C. Guo, “Hyper-entangled photon pairs from single quantum dots,” Europhys. Lett. 89, 44002 (2010). [CrossRef]
  45. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80, 205326 (2009). [CrossRef]
  46. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. P. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  47. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78, 085307 (2008). [CrossRef]
  48. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83, 115303 (2011). [CrossRef]
  49. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  50. B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, “Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities,” Opt. Express 20, 24664–24677 (2012). [CrossRef]
  51. T. J. Wang, Y. Lu, and G. L. Long, “Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities,” Phys. Rev. A 86, 042337 (2012). [CrossRef]
  52. A. M. Stephens, Z. W. E. Evans, S. J. Devitt, A. D. Greentree, A. G. Fowler, W. J. Munro, J. L. O’Brien, K. Nemoto, and L. C. L. Hollenberg, “Deterministic optical quantum computer using photonic modules,” Phys. Rev. A 78, 032318 (2008). [CrossRef]
  53. R. B. Patel, A. J. Bennett, K. Cooper, P. Atkinson, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Quantum interference of electrically generated single photons from a quantum dot,” Nanotechnology 21, 274011 (2010). [CrossRef]
  54. H.-R. Wei and F.-G. Deng, “Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity,” Opt. Express 21, 17671–17685 (2013). [CrossRef]
  55. D. Solenov, S. E. Economou, and T. L. Reinecke, “Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity,” Phys. Rev. B 87, 035308 (2013). [CrossRef]
  56. F. R. Braakman, P. Barthelemy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, “Long-distance coherent coupling in a quantum dot array,” Nat. Nanotechnol. 8, 432–437 (2013). [CrossRef]
  57. A. Aufféves-Garnier, C. Simon, J. M. Gérard, and J. P. Poizat, “Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime,” Phys. Rev. A 75, 053823 (2007). [CrossRef]
  58. V. Loo, L. Lanco, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, and P. Senellart, “Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-Q micropillar,” Appl. Phys. Lett. 97, 241110 (2010). [CrossRef]
  59. D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J. J. Finley, D. V. Bulaev, and D. Loss, “Observation of extremely slow hole spin relaxation in self-assembled quantum dots,” Phys. Rev. B 76, 241306 (2007). [CrossRef]
  60. B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “Optical pumping of a single hole spin in a quantum dot,” Nature 451, 441–444 (2008). [CrossRef]
  61. D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wüst, K. Karrai, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A coherent single-hole spin in a semiconductor,” Science 325, 70–72 (2009). [CrossRef]
  62. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  63. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001). [CrossRef]
  64. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited