OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2696–2703

Rapid scan absorption spectroscopy using a waveform-driven electro-optic phase modulator in the 1.6–1.65 μm region

Kevin O. Douglass, Stephen E. Maxwell, Gar-Wing Truong, Roger D. van Zee, James R. Whetstone, Joseph T. Hodges, David A. Long, and David F. Plusquellic  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2696-2703 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002696


View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is reported for performing fast optical frequency scans over a bandwidth of 36.9 GHz and at a sweep rate of 40 kHz using a single second-order sideband from an electro-optic phase modulator driven by an arbitrary waveform generator. Single sideband selection is accomplished using the resonator modes of a Fabry–Perot filter cavity having a finesse of 44 and a free-spectral range of 300 MHz. The finesse is sufficiently high to give <2% total transmission of the laser frequency carrier and all other nonresonant sidebands while sufficiently low to ensure on-resonance switching times as short as 100 ns. A frequency offset component of a diode laser is used for active stabilization of the laser to the filter cavity at all times eliminating frequency drift of the filter cavity transmission comb used for single sideband selection and scanning. The method is demonstrated for the detection of CO2 near 1602 nm and for CH4 lines near 1643 nm. Detection of ambient level concentrations of each of these gases is demonstrated in a 25 μs scan over a path length of 50 m at a sensitivity of 3×109cm1Hz1/2. The corresponding measurement uncertainties (k=1 or 1σ) in a (2–3) ms time period and a 1 km path length are <±2μmol/mol (ppm) for CO2 and <±5nmol/mol (ppb) for CH4. The arbitrary waveform control of the pulse sequence, repetition rate, and duty cycle provides for optimization of the light source for a variety of application areas that include path integrated differential absorption and differential absorption light detection and ranging.

OCIS Codes
(250.7360) Optoelectronics : Waveguide modulators
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3420) Remote sensing and sensors : Laser sensors
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: May 21, 2013
Manuscript Accepted: August 17, 2013
Published: September 25, 2013

Citation
Kevin O. Douglass, Stephen E. Maxwell, Gar-Wing Truong, Roger D. van Zee, James R. Whetstone, Joseph T. Hodges, David A. Long, and David F. Plusquellic, "Rapid scan absorption spectroscopy using a waveform-driven electro-optic phase modulator in the 1.6–1.65 μm region," J. Opt. Soc. Am. B 30, 2696-2703 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005). [CrossRef]
  2. D. A. Long, A. Cygan, R. D. van Zee, M. Okumura, C. E. Miller, D. Lisak, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy,” Chem. Phys. Lett. 536, 1–8 (2012). [CrossRef]
  3. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004). [CrossRef]
  4. R. Z. Martinez, M. Metsala, O. Vaittinen, T. Lantta, and L. Halonen, “Laser-locked, high-repetition-rate cavity ringdown spectrometer,” J. Opt. Soc. Am. B 23, 727–740 (2006). [CrossRef]
  5. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  6. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999). [CrossRef]
  7. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys. 38, 920–922 (1999).
  8. P. Ehlrs, I. Silander, J. Wang, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10-12 cm-1 Hz-1/2 region,” J. Opt. Soc. Am. B 29, 1305–1315 (2012). [CrossRef]
  9. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  10. K. O. Douglass, S. E. Maxwell, D. A. Long, J. T. Hodges, and D. F. Plusquellic, “Fast switching arbitrary frequency light source for broadband spectroscopic applications,” U.S. patent13/827,476 (March14, 2013).
  11. G.-W. Truong, K. O. Douglass, S. E. Maxwell, R. D. van Zee, D. F. Plusquellic, J. T. Hodges, and D. A. Long, “Frequency-agile, rapid scanning spectroscopy,” Nat. Photonics 7, 532–534 (2013). [CrossRef]
  12. D. A. Long, G.-W. Truong, R. D. van Zee, D. F. Plusquellic, and J. T. Hodges, “Frequency-agile, rapid scanning spectroscopy: absorption sensitivity of 2×10-12 cm-1 Hz-1/2 with a tunable diode laser,” Appl. Phys. B (posted August 3, 2013, in press).
  13. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942). [CrossRef]
  14. D. R. Herriot, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526 (1964). [CrossRef]
  15. T. E. L. Smith, M. J. Wooster, M. Tattaris, and D. W. T. Griffith, “Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of “clean air” and “polluted plumes”,” Atmos. Meas. Tech. 4, 97–116 (2011). [CrossRef]
  16. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991).
  17. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19, 8973–8984 (2011). [CrossRef]
  18. S. Davis, M. Farnik, D. Uy, and D. J. Nesbitt, “Concentration modulation spectroscopy with a pulsed slit supersonic discharge expansion source,” Chem. Phys. Lett. 344, 23–30 (2001). [CrossRef]
  19. L. Nugent-Glandorf, T. Neely, F. Adler, A. J. Fleisher, K. C. Cossel, B. Bjork, T. Dinneen, J. Ye, and S. A. Diddams, “Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection,” Opt. Lett. 37, 3285–3287 (2012). [CrossRef]
  20. S. Kameyama, M. Imaki, Y. Hirono, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Performance improvement and analysis of a 1.6 μm continuous-wave modulation laser absorption spectrometer system for CO2 sensing,” Appl. Opt. 50, 1560–1569 (2011). [CrossRef]
  21. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 micron differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile,” Appl. Opt. 48, 748–757 (2009). [CrossRef]
  22. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  23. H. Riris, K. Numata, S. Li, S. Wu, A. Ramanathan, M. Dawsey, J. Mao, R. Kawa, and J. B. Abshire, “Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar,” Appl. Opt. 51, 8296–8305 (2012). [CrossRef]
  24. K. Numata, J. R. Chen, S. T. Wu, and J. B. Abshire, “Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon diode,” Appl. Opt. 50, 1047–1056 (2011). [CrossRef]
  25. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  26. D. F. Plusquellic, S. R. Davis, and F. Jahanmir, “Probing nuclear quadrupole interaction in the rotationally resolved S1←S0 electronic spectrum of 2-chloronaphthalene,” J. Chem. Phys. 115, 225–235 (2001). [CrossRef]
  27. E. Riedle, S. H. Ashworth, J. T. Farrell, and D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994). [CrossRef]
  28. V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, “THz laser study of self-pressure and temperature broadening and shifts of water lines for pressures up to 1.4 kPa,” J. Quant. Spectrosc. Radiat. Transfer 87, 377–385 (2004). [CrossRef]
  29. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  30. M. R. Zaghloul and A. N. Ali, “Algorithm 916: computing the Faddeyeva and Voigt functions,” ACM Trans. Math. Softw. 38, 1–22 (2011). [CrossRef]
  31. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  32. C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Methane spectroscopy in the near infrared and its implications on atmospheric retrievals,” Atmos. Chem. Phys. Discuss. 8, 10021–10055 (2008). [CrossRef]
  33. E. J. Dlugokencky, S. Houweling, L. Bruhwiler, K. A. Masarie, P. M. Lang, J. B. Miller, and P. P. Tans, “Atmospheric methane levels off: temporary pause or new steady state?” Geophys. Res. Lett. 30, 1–4 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited