OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2704–2709

Roles of thermal noise and detector efficiency in distillation of continuous variable entanglement state

ShengLi Zhang, YuLi Dong, JianHong Shi, XuBo Zou, and GuangCan Guo  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2704-2709 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the degradation of continuous variable (CV) entanglement distillation in the presence of thermal environment and nonunity detecting efficiency. We explore the logarithmic negativity as a criteria and compare the output entanglement between the schemes of single-photon subtraction (PS) and two-PS. The probability of success is also investigated. We show that compared with detector efficiency, thermal noise plays a more dominant role in Gaussian entanglement distillation. Our results shed more light on the noise mechanism that influences realistic CV entanglement distillation and is of experimental relevance in developing a more efficient entanglement distillation scheme.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: June 6, 2013
Manuscript Accepted: August 26, 2013
Published: September 25, 2013

ShengLi Zhang, YuLi Dong, JianHong Shi, XuBo Zou, and GuangCan Guo, "Roles of thermal noise and detector efficiency in distillation of continuous variable entanglement state," J. Opt. Soc. Am. B 30, 2704-2709 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  2. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  3. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006). [CrossRef]
  4. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996). [CrossRef]
  5. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  6. J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002). [CrossRef]
  7. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002). [CrossRef]
  8. T. Opatrný, G. Kurizki, and D. G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A 61, 032302 (2000). [CrossRef]
  9. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science 306, 660–662 (2004). [CrossRef]
  10. J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,” Phys. Rev. A 80, 053822 (2009). [CrossRef]
  11. C. Navarrete-Benlloch, R. García-Patrón, J. H. Shapiro, and N. J. Cerf, “Enhancing quantum entanglement by photon addition and subtraction,” Phys. Rev. A 86, 012328 (2012). [CrossRef]
  12. S. Zhang and P. van Loock, “Distillation of mixed-state continuous-variable entanglement by photon subtraction,” Phys. Rev. A 82, 062316 (2010). [CrossRef]
  13. D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003). [CrossRef]
  14. J. Eisert, D. E. Browne, S. Scheel, and M. B. Plenio, “Distillation of continuous-variable entanglement with optical means,” Ann. Phys. 311, 431–458 (2004). [CrossRef]
  15. J. Eisert, M. B. Plenio, D. E. Browne, S. Scheel, and A. Feito, “On the experimental feasibility of continuous-variable optical entanglement distillation,” Opt. Spectrosc. 103, 173–177 (2007). [CrossRef]
  16. A. P. Lund and T. C. Ralph, “Continuous-variable entanglement distillation over a general lossy channel,” Phys. Rev. A 80, 032309 (2009). [CrossRef]
  17. J. Fiurášek, “Distillation and purification of symmetric entangled Gaussian states,” Phys. Rev. A 82, 042331 (2010). [CrossRef]
  18. E. T. Campbell and J. Eisert, “Gaussification and entanglement distillation of continuous-variable systems: a unifying picture,” Phys. Rev. Lett. 108, 020501 (2012). [CrossRef]
  19. B. Hage, A. Samblowski, J. Diguglielmo, A. Franzen, J. Fiurášek, and R. Schnabel, “Preparation of distilled and purified continuous-variable entangled states,” Nat. Phys. 4, 915–918 (2008). [CrossRef]
  20. R. Dong, M. Lassen, J. Heersink, C. Marquardt, R. Filip, G. Leuchs, and U. L. Andersen, “Experimental entanglement distillation of mesoscopic quantum states,” Nat. Phys. 4, 919–923 (2008). [CrossRef]
  21. P. van Loock, “Optical hybrid approaches to quantum information,” Laser Photon. Rev. 5, 167–200 (2011). [CrossRef]
  22. H. Takahashi, J. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [CrossRef]
  23. V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing quantum commutation rules by addition and subtraction of single photons to/from a light field,” Science 317, 1890–1893 (2007). [CrossRef]
  24. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, and E. Knill, “Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum,” Phys. Rev. A 82, 031802 (2010). [CrossRef]
  25. S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleporation improvement by inconclusive photon subtraction,” Phys. Rev. A 67, 032314 (2003). [CrossRef]
  26. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73042310 (2006). [CrossRef]
  27. S. Zhang and P. van Loock, “Local Gaussian operations can enhance continuous-variable entanglement distillation,” Phys. Rev. A 84, 062309 (2011). [CrossRef]
  28. J. Fiurášek, “Improving entanglement concentration of Gaussian states by local displacements,” Phys. Rev. A 84, 012335 (2011). [CrossRef]
  29. P. Pearle, “Hidden-variable example based upon data rejection,” Phys. Rev. D 2, 1418–1425 (1970). [CrossRef]
  30. E. Santos, “Critical analysis of the empirical tests of local hidden-variable theories,” Phys. Rev. A 46, 3646–3656 (1992). [CrossRef]
  31. S. Yang, X. Zou, S. Zhang, B. Shi, P. van Loock, and G. Guo, “Multipartite continuous-variable entanglement distillation using local squeezing and only one photon-subtraction operation,” e-print arXiv:1106.1536v1.
  32. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002). [CrossRef]
  33. G. Adesso, A. Serafini, and F. Illuminati, “Quantification and scaling of multipartite entanglement in continuous variable systems,” Phys. Rev. Lett. 93, 220504 (2004). [CrossRef]
  34. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  35. G. Lindblad, “Cloning the quantum oscillator,” J. Phys. A 33, 5059–5076 (2000). [CrossRef]
  36. P. Marek, J. Fiurášek, B. Hage, A. Franzen, J. DiGugliemo, and R. Schnabel, “Multiple-copy distillation and purification of phase-diffused squeezed states,” Phys. Rev. A 76, 053820 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited