OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2710–2714

Low repetition rate subnanosecond pulse laser generation from a diode pumped Nd:Lu3Al5O12 laser with electro-optic modulator and transmission semiconductor saturable absorber

L. Chang, S. Z. Zhao, K. J. Yang, J. Zhao, L. H. Zheng, X. D. Xu, J. Q. Di, J. Xu, and Y. G. Wang  »View Author Affiliations


JOSA B, Vol. 30, Issue 10, pp. 2710-2714 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002710


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the dual-loss modulated technology, i.e., adopting the electro-optic (EO) modulator and transmission semiconductor saturable absorber (transmission SSA) simultaneously, a diode-pumped doubly Q-switched and mode-locked (QML) Nd:Lu3Al5O12 (Nd:LuAG) laser at 1.06 μm has been realized for the first time. In comparison to the singly passively QML Nd:LuAG laser with transmission SSA, the doubly QML laser can generate more stable pulses with shorter pulse widths and higher peak powers. It can also be observed that the pulse duration of the Q-switched envelope decreases with increasing pump power. When the pump power exceeds 6.52 W for the first time, there is only one mode-locked pulse underneath a Q-switched envelope for this doubly QML Nd:LuAG laser. As a result, the subnanosecond pulse laser with 1 kHz repetition rate of EO and high stability can be generated. The shortest pulse duration generated is about 718 ps and the highest peak power reaches as high as 502 kW. The experimental results show that Nd:LuAG is an excellent alternative crystal for diode-pumped QML pulsed laser generation.

© 2013 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3380) Lasers and laser optics : Laser materials
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 18, 2013
Revised Manuscript: August 25, 2013
Manuscript Accepted: August 27, 2013
Published: September 26, 2013

Citation
L. Chang, S. Z. Zhao, K. J. Yang, J. Zhao, L. H. Zheng, X. D. Xu, J. Q. Di, J. Xu, and Y. G. Wang, "Low repetition rate subnanosecond pulse laser generation from a diode pumped Nd:Lu3Al5O12 laser with electro-optic modulator and transmission semiconductor saturable absorber," J. Opt. Soc. Am. B 30, 2710-2714 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-10-2710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” International Conference on Advanced Laser Technologies 2002, ALT-02, Adelboden, SwitzerlandSeptember15–20, 2002 (SPIE, 2002).
  2. S. Lévêque-Fort, D. N. Papadopoulos, S. Forget, F. Balembois, and P. Georges, “Fluorescence lifetime imaging with low-repetition-rate passively mode-locked diode-pumped Nd:YVO4 oscillator,” Opt. Lett. 30, 168 (2005). [CrossRef]
  3. D. J. Farrell and M. J. Damzen, “High power scaling of a passively mode locked laser oscillator in a bounce geometry,” Opt. Express 15, 4781–4786 (2007). [CrossRef]
  4. A. Agnesi, L. Carrà, P. Dallocchio, F. Pirzio, G. Reali, S. Lodo, and G. Piccinno, “50-mJ macro-pulses at 1064 nm from a diode-pumped picosecond laser system,” Opt. Express 19, 20316–20321 (2011). [CrossRef]
  5. X. Délen, F. Balembois, O. Musset, and P. Georges, “Characteristics of laser operation at 1064 nm in Nd:YVO4 under diode pumping at 808 and 914 nm,” J. Opt. Soc. Am. B 28, 52–57 (2011). [CrossRef]
  6. S.-T. Lin and C.-S. Hsieh, “Triple-wavelength Nd-laser system by cascaded electro-optic periodically poled lithium niobate Bragg modulator,” Opt. Express 20, 29659–29664 (2012). [CrossRef]
  7. L. Chen, Z. Wang, and H. Yu, “High-power single- and dual-wavelength Nd:GdVO4 lasers with potential application for the treatment of telangiectasia,” Appl. Phys. Express 5, 112701 (2012). [CrossRef]
  8. R. C. Botha, H. J. Strauss, C. Bollig, W. Koen, O. Collett, N. V. Kuleshov, M. J. Esser, W. L. Combrinck, and H. M. von Bergmann, “High average power 1314 nm Nd:YLF laser, passively Q-switched with V:YAG,” Opt. Lett. 38, 980–982 (2013). [CrossRef]
  9. M. Sugiyama, Y. Fujimoto, T. Yanagida, A. Yamaji, Y. Yokota, and A. Yoshikawa, “Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods,” J. Cryst. Growth 362, 178–181 (2013). [CrossRef]
  10. X. D. Xu, X. D. Wang, and J. Q. Meng, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6, 678–681 (2009). [CrossRef]
  11. X. D. Xu, J. Q. Di, W. D. Tan, J. Zhang, D. Y. Tang, D. Z. Li, D. H. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9, 406–409 (2012). [CrossRef]
  12. J. Q. Di, J. Q. Xu, and X. D. Meng, “Diode-pumped continuous wave and Q-switched operation of Nd:LuAG crystal,” Laser Phys. 21, 844–846 (2011). [CrossRef]
  13. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped Q-switched and mode-locked Nd:YVO4 laser with a Cr4+:YAG saturable absorber,” Opt. Lett. 25, 1442–1444 (2000). [CrossRef]
  14. J. Lin, H.-R. Chen, H.-H. Hsu, M.-D. Wei, K.-H. Lin, and W.-F. Hsieh, “Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal,” Opt. Express 16, 16538–16545 (2008).
  15. J. Zhao, S. Z. Zhao, K. J. Yang, L. H. Zheng, and J. Xu, “Diode-pumped Q-switched and mode-locked Nd:Lu3Al5O12 lasers,” Laser Phys. Lett. 10, 055806 (2013). [CrossRef]
  16. M. Bass, “Electro-optic Q-switching of the Nd:YVO4 laser without an intracavity polarizer,” IEEE J. Quantum Electron. 11, 938–939 (1975). [CrossRef]
  17. M. D. Skeldon, “Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator,” J. Opt. Soc. Am. B 19, 2423–2426 (2002). [CrossRef]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003). [CrossRef]
  19. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Topics Quantum Electron. 2, 435–453 (1996). [CrossRef]
  20. Y. G. Wang, J. Y. Peng, H. M. Tan, L. S. Qian, L. Zhai, Z. G. Zhang, Q. Y. Wang, T. Lin, and X. Y. Ma, “Study for characteristics of passively Q-switched Nd∶YVO4 laser with central semiconductor SWANG saturable absorption mirror,” Acta Photon. Sin. 36, 401–404 (2007).
  21. J. K. Jabczyński, W. Zendzian, and J. Kwiatkowski, “Q-switched mode-locking with acousto-optic modulator in a diode pumped Nd:YVO4 laser,” Opt. Express 14, 2184–2190 (2006). [CrossRef]
  22. T. Li, S. Zhao, Z. Zhuo, K. Yang, G. Li, and D. Li, “Pulse-width reduction in a diode-pumped doubly Q-switched YVO4/Nd:YVO4 laser with electro-optic modulator and GaAs saturable absorber,” J. Opt. Soc. Am. B 26, 1146–1150 (2009).
  23. K. Yang, S. Zhao, J. He, B. Zhang, C. Zuo, G. Li, D. Li, and M. Li, “Diode-pumped passively Q-switched and mode-locked Nd:GdVO4 laser at 1.34 μm with V:YAG saturable absorber,” Opt. Express 16, 20176–20185 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited