OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2715–2721

Light bullets in spatially modulated Laguerre–Gauss optical lattices

Si-Liu Xu and Milivoj R. Belić  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2715-2721 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the generation and stability of light bullets (LBs) in Laguerre–Gauss (LG) optical lattices, in which both linear and nonlinear changes in the refractive index are spatially modulated. We demonstrate that the linear and nonlinear contributions considerably affect the bullet shape and its range of stability; at the same time the nonlinear modulation depth, through the propagation constant, affects the width of the stability domain. We find that the energy of stable space-time solitons increases with the increase in the modulation depth. We discover that the behavior of LBs in LG optical lattices is substantially different from the behavior in the more familiar Bessel lattices.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: June 19, 2013
Revised Manuscript: August 24, 2013
Manuscript Accepted: August 28, 2013
Published: September 26, 2013

Si-Liu Xu and Milivoj R. Belić, "Light bullets in spatially modulated Laguerre–Gauss optical lattices," J. Opt. Soc. Am. B 30, 2715-2721 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. He and P. D. Drummond, “Theory of multidimensional parametric band-gap simultons,” Phys. Rev. E 58, 5025–5046 (1998). [CrossRef]
  2. L. Torner, S. Carrasco, J. P. Torres, L.-C. Crasovan, and D. Mihalache, “Tandem light bullets,” Opt. Commun. 199, 277–281 (2001). [CrossRef]
  3. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated x-shaped light bullets,” Phys. Rev. Lett. 91, 093904 (2003). [CrossRef]
  4. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005). [CrossRef]
  5. P. D. Trapani, D. Caironi, G. Valiulis, A. Dubietis, R. Danielius, and A. Piskarskas, “Observation of temporal solitons in second-harmonic generation with titled pulses,” Phys. Rev. Lett. 81, 570–573 (1998). [CrossRef]
  6. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4634 (1999). [CrossRef]
  7. O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen, “Collapse arrest and soliton stabilization in nonlocal nonlinear media,” Phys. Rev. E 66, 046619 (2002). [CrossRef]
  8. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Three-dimensional spatiotemporal solitons in nonlocal nonlinear media,” Phys. Rev. E 73, 025601(R) (2006). [CrossRef]
  9. D. E. Edmundson and R. H. Enns, “Robust bistable light bullets,” Opt. Lett. 17, 586–588 (1992). [CrossRef]
  10. D. Mihalache, D. Mazilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed, L. Torner, J. P. Torres, and F. Lederer, “Stable spinning optical solitons in three dimensions,” Phys. Rev. Lett. 88, 073902 (2002). [CrossRef]
  11. L. Torner and Y. V. Kartashov, “Light bullets in optical tandems,” Opt. Lett. 34, 1129–1141 (2009). [CrossRef]
  12. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice,” Phys. Rev. E 70, 055603 (2004). [CrossRef]
  13. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902 (2005). [CrossRef]
  14. J. L. Roberts, N. R. Claussen, J. P. Burke, C. H. Greene, E. A. Cornell, and C. E. Wieman, “Resonant magnetic field control of elastic scattering in cold 85Rb,” Phys. Rev. Lett. 81, 5109–5112 (1998). [CrossRef]
  15. F. K. Fatemi, K. M. Jones, and P. D. Lett, “Observation of optically induced Feshbach resonances in collisions of cold atoms,” Phys. Rev. Lett. 85, 4462–4465 (2000). [CrossRef]
  16. F. Ye, Y. V. Kartashov, and L. Torner, “Asymmetric matter-wave solitons at nonlinear interfaces,” Phys. Rev. A 74, 063616 (2006). [CrossRef]
  17. Y. V. Bludov and V. V. Konotop, “Localized modes in arrays of boson-fermion mixtures,” Phys. Rev. A 74, 043616 (2006). [CrossRef]
  18. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15, 12145–12150 (2007). [CrossRef]
  19. P. D. Rasmussen, F. H. Bennet, D. N. Neshev, A. A. Sukhorukov, C. R. Rosberg, W. Krolikowski, O. Bang, and Y. Kivshar, “Observation of two-dimensional nonlocal gap solitons,” Opt. Lett. 34, 295–297 (2009). [CrossRef]
  20. F. Chen, M. Stepic, C. E. Rüter, D. Runde, D. Kip, V. Shandarov, O. Manela, and M. Segev, “Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays,” Opt. Express 13, 4314–4324 (2005). [CrossRef]
  21. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, “Optical properties of infrared femtosecond laser modified fused silica and application to waveguide fabrication,” J. Opt. Soc. Am. B 22, 2138–2143 (2005). [CrossRef]
  22. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14, 2151–2157 (2006). [CrossRef]
  23. M. Öster, M. Johansson, and A. Eriksson, “Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability,” Phys. Rev. E 67, 056606 (2003). [CrossRef]
  24. J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and P. J. Torres, “Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,” Phys. Rev. Lett. 98, 064102 (2007). [CrossRef]
  25. Y. Kominis and K. Hizanidis, “Power dependent soliton location and stability in complex photonic structures,” Opt. Express 16, 12124–12138 (2008). [CrossRef]
  26. K. Hizanidis, Y. Kominis, and N. K. Efremidis, “Interlaced linear-nonlinear optical waveguide arrays,” Opt. Express 16, 18296–18311 (2008). [CrossRef]
  27. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  28. H. Sakaguchi and B. A. Malomed, “Solitons in combined linear and nonlinear lattice potentials,” Phys. Rev. A 81, 013624 (2010). [CrossRef]
  29. H. Sakaguchi and B. A. Malomed, “Stable two-dimensional solitons supported by radially inhomogeneous self-focusing nonlinearity,” Opt. Lett. 37, 1035–1037 (2012). [CrossRef]
  30. Y. Kominis, “Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures,” Phys. Rev. E 73, 066619 (2006). [CrossRef]
  31. T. Mayteevarunyoo, B. A. Malomed, and A. Roeksabutr, “Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type,” Opt. Express 19, 17834–17851 (2011). [CrossRef]
  32. F. Ye, Y. V. Kartashov, B. Hu, and L. Torner, “Light bullets in Bessel optical lattices with spatially modulated nonlinearity,” Opt. Express 17, 11328–11334 (2009). [CrossRef]
  33. Y. Kominis, “Bright, dark, antidark, and kink solitons in media with periodically alternating sign of nonlinearity,” Phys. Rev. A 87, 063849 (2013). [CrossRef]
  34. J. Yang, “Transversely stable soliton trains in photonic lattices,” Phys. Rev. A 84, 033840 (2011). [CrossRef]
  35. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003). [CrossRef]
  36. L. Dong, F. Ye, and H. Wang, “Suppression of azimuthal instability of ring vortex solitons,” New J. Phys. 11, 073026 (2009). [CrossRef]
  37. J. Zheng and L. Dong, “Multipeaked fundamental and vortex solitons in azimuthally modulated Bessel lattices,” J. Opt. Soc. Am. B 28, 780–786 (2011). [CrossRef]
  38. A. S. Desyatnikov, A. A. Sukhorukov, and Y. S. Kivshar, “Azimuthons: spatially modulated vortex solitons,” Phys. Rev. Lett. 95, 203904 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited