OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2722–2730

Rigorous broadband investigation of liquid-crystal plasmonic structures using finite-difference time-domain dispersive-anisotropic models

Konstantinos P. Prokopidis, Dimitrios C. Zografopoulos, and Emmanouil E. Kriezis  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2722-2730 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (661 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A finite-difference time-domain scheme is proposed for the rigorous study of liquid-crystal photonic and plasmonic structures. The model takes into account the full-tensor liquid-crystal anisotropy as well as the permittivity dispersion of all materials involved. Isotropic materials are modeled via a generalized critical points model, while the dispersion of the liquid-crystal indices is described by Lorentzian terms. The validity of the proposed scheme is verified via a series of examples, ranging from transmission through liquid-crystal waveplates and cholesteric slabs to the plasmonic response of arrays of gold nanostripes with a liquid-crystal overlayer and the dispersive properties of metal–liquid-crystal–metal plasmonic waveguides. Results are directly compared with reference analytical or frequency-domain numerical solutions.

© 2013 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: June 20, 2013
Revised Manuscript: August 20, 2013
Manuscript Accepted: August 28, 2013
Published: September 26, 2013

Konstantinos P. Prokopidis, Dimitrios C. Zografopoulos, and Emmanouil E. Kriezis, "Rigorous broadband investigation of liquid-crystal plasmonic structures using finite-difference time-domain dispersive-anisotropic models," J. Opt. Soc. Am. B 30, 2722-2730 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  2. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011). [CrossRef]
  3. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012). [CrossRef]
  4. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophoton. 6, 061001 (2012). [CrossRef]
  5. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimon, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005). [CrossRef]
  6. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24, OP131–OP135 (2012). [CrossRef]
  7. Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011). [CrossRef]
  8. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I.-C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012). [CrossRef]
  9. L. De Sio, A. Cunningham, V. Verrina, C. M. Tone, R. Caputo, T. Bürgi, and C. Umeton, “Double active control of the plasmonic resonance of a gold nanoparticle array,” Nanoscale 4, 7619–7623 (2012). [CrossRef]
  10. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010). [CrossRef]
  11. A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012). [CrossRef]
  12. A. C. Tasolamprou, D. C. Zografopoulos, and E. E. Kriezis, “Liquid crystal-based dielectric loaded surface plasmon polariton optical switches,” J. Appl. Phys. 110, 093102 (2011). [CrossRef]
  13. D. C. Zografopoulos and R. Beccherelli, “Plasmonic variable optical attenuator based on liquid-crystal tunable stripe waveguides,” Plasmonics 8, 599–604 (2013). [CrossRef]
  14. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013). [CrossRef]
  15. D. C. Zografopoulos and R. Beccherelli, “Design of a vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013). [CrossRef]
  16. D. C. Zografopoulos and R. Beccherelli, “Long-range plasmonic directional coupler switches controlled by nematic liquid crystals,” Opt. Express 21, 8240–8250 (2013). [CrossRef]
  17. J. Beeckman, R. James, F. A. Fernández, W. De Cort, P. J. M. Vanbrabant, and K. Neyts, “Calculation of fully anisotropic liquid crystal waveguide modes,” J. Lightwave Technol. 27, 3812–3819 (2009). [CrossRef]
  18. E. E. Kriezis and S. J. Elston, “Wide angle beam propagation method for liquid crystal device calculations,” Appl. Opt. 39, 5707–5714 (2000). [CrossRef]
  19. G. D. Ziogos and E. E. Kriezis, “Modeling light propagation in liquid crystal devices with a 3-D full-vector finite-element beam propagation method,” Opt. Quantum Electron. 40, 733–748 (2008). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  21. F. Teixeira, “Time-domain finite-difference and finite-element methods for maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008). [CrossRef]
  22. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef]
  23. A. Vial, “Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the finite-difference time domain method,” J. Opt. A 9, 745–748 (2007). [CrossRef]
  24. A. Vial, T. Laroche, M. Dridi, and L. Le Cunff, “A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method,” Appl. Phys. A 103, 849–853 (2011). [CrossRef]
  25. K. P. Prokopidis and D. C. Zografopoulos, “Efficient FDTD algorithms for dispersive Drude-critical points media based on the bilinear z-transform,” Electron. Lett. 49, 534–536 (2013). [CrossRef]
  26. K. P. Prokopidis and D. C. Zografopoulos, “A unified FDTD/PML scheme based on critical points for accurate studies of plasmonic structures,” J. Lightwave Technol. 31, 2467–2476 (2013). [CrossRef]
  27. E. E. Kriezis and S. J. Elston, “Finite-difference time-domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999). [CrossRef]
  28. E. E. Kriezis and S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000). [CrossRef]
  29. M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009). [CrossRef]
  30. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Display Technol. 1, 51–61 (2005). [CrossRef]
  31. L. Yang, “3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method,” Int. J. Infrared Millim. Waves 28, 557–565 (2007). [CrossRef]
  32. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007). [CrossRef]
  33. S. Huang and F. Li, “FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms,” Int. J. Infrared Millim. Waves 25, 815–825 (2004). [CrossRef]
  34. V. Nayyeri, M. Soleimani, J. Rashed-Mohassel, and M. Dehmollaian, “FDTD modeling of dispersive bianisotropic media using Z-transform method,” IEEE Trans. Antennas Propag. 59, 2268–2279 (2011). [CrossRef]
  35. A. A. Al-Jabr, M. A. Alsunaidi, T. Khee, and B. S. Ooi, “A simple FDTD algorithm for simulating EM-wave propagation in general dispersive anisotropic material,” IEEE Trans. Antennas Propag. 61, 1321–1326 (2013). [CrossRef]
  36. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  37. S. Stallinga, “Berreman 4×4 matrix method for reflective liquid crystal displays,” J. Appl. Phys. 85, 3023–3031 (1999). [CrossRef]
  38. COMSOL Multiphysics v4.3a.
  39. A. Vial and T. Laroche, “Description of dispersion of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152–7158 (2007). [CrossRef]
  40. J. Pereda, L. Vielva, A. Vegas, and A. Prieto, “Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion,” IEEE Trans. Microwave Theor. Tech. 49, 377–381 (2001). [CrossRef]
  41. G. R. Werner and J. R. Cary, “A stable FDTD algorithm for non-diagonal, anisotropic dielectrics,” J. Comput. Phys. 226, 1085–1101 (2007). [CrossRef]
  42. I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  43. D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, “Theoretical and experimental optical studies of cholesteric liquid crystal films with thermally induced pitch gradients,” Phys. Rev. B 73, 061701 (2006). [CrossRef]
  44. A. C. Tasolamprou, M. Mitov, D. C. Zografopoulos, and E. E. Kriezis, “Theoretical and experimental studies of hyperreflective polymer-network cholesteric liquid crystal structures with helicity inversion,” Opt. Commun. 282, 903–907 (2009). [CrossRef]
  45. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  46. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited