OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2731–2736

Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers

Cristian Ciracì, Yaroslav Urzhumov, and David R. Smith  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2731-2736 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (752 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the optical scattering from a variety of axially symmetric plasmonic nanoparticle dimers separated by nanoscale gaps, quantifying the role of classical nonlocality on their optical properties. Due to the rotational symmetry of the analyzed structures, a high degree of accuracy is achieved using a computational approach termed 2.5D modeling, in which a small number of simulations on a two-dimensional domain can replace a memory- and time-intensive simulation on a three-dimensional domain. We find that scattered light from dimers consisting of nanoparticles with flat surfaces, such as nanodisks, exhibits pronounced spectral shifts due to the nonlocality of the electron fluid; these significant shifts persist even at relatively large (>1nm) gap dimensions, where quantum tunneling effects are believed to be negligible. The 2.5D modeling technique accurately incorporates all responses due to any nonaxially symmetric eigenmodes of the system, such as dipolar and quadrupolar modes, thereby providing a complete characterization of the system for any excitation.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles
(350.4990) Other areas of optics : Particles

ToC Category:
Physical Optics

Original Manuscript: July 18, 2013
Revised Manuscript: August 23, 2013
Manuscript Accepted: August 27, 2013
Published: September 26, 2013

Cristian Ciracì, Yaroslav Urzhumov, and David R. Smith, "Effects of classical nonlocality on the optical response of three-dimensional plasmonic nanodimers," J. Opt. Soc. Am. B 30, 2731-2736 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef]
  2. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11, 2606–2610 (2011). [CrossRef]
  3. D.-K. Lim, K.-S. Jeon, H. M. Kim, J.-M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9, 60–67 (2009). [CrossRef]
  4. L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 78, 802–804 (2001). [CrossRef]
  5. S.-Y. Chen and A. A. Lazarides, “Quantitative amplification of Cy5 SERS in ‘warm spots’ created by plasmonic coupling in nanoparticle assemblies of controlled structure,” J. Phys. Chem. C 113, 12167–12175 (2009). [CrossRef]
  6. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009). [CrossRef]
  7. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang, and K. C. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011). [CrossRef]
  8. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005–11013 (2012). [CrossRef]
  9. G. Hajisalem, A. Ahmed, Y. Pang, and R. Gordon, “Plasmon hybridization for enhanced nonlinear optical response,” Opt. Express 20, 29923–29930 (2012). [CrossRef]
  10. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013). [CrossRef]
  11. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  12. J. J. Mock, R. T. Hill, Y.-J. Tsai, A. Chilkoti, and D. R. Smith, “Probing dynamically tunable localized surface plasmon resonances of film-coupled nanoparticles by evanescent wave excitation,” Nano Lett. 12, 1757–1764 (2012). [CrossRef]
  13. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, “Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode,” Nano Lett. 12, 1648–1654 (2012). [CrossRef]
  14. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef]
  15. R. T. Hill, J. J. Mock, Y. A. Urzhumov, D. S. Sebba, S. J. Oldenburg, S.-Y. Chen, A. A. Lazarides, A. Chilkoti, and D. R. Smith, “Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light,” Nano Lett. 10, 4150–4154 (2010). [CrossRef]
  16. B. Gao, G. Arya, and A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nature Nanotechnol. 7, 433–437 (2012). [CrossRef]
  17. C. Ciracì, J. B. Pendry, and D. R. Smith, “Hydrodynamic model for plasmonics: a macroscopic approach to a microscopic problem,” Chem. Phys. Chem. 14, 1109–1116 (2013). [CrossRef]
  18. Y. A. Urzhumov, N. Landy, and D. R. Smith, “Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves,” J. Appl. Phys. 111, 053105 (2012). [CrossRef]
  19. C. Ciracì, R. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012). [CrossRef]
  20. C. Cirac, Y. A. Urzhumov, and D. R. Smith, “Far-field analysis of axially symmetric three-dimensional directional cloaks,” Opt. Express 21, 9397–9406 (2013). [CrossRef]
  21. A. Eguiluz and J. Quinn, “Hydrodynamic model for surface plasmons in metals and degenerate semiconductors,” Phys. Rev. B 14, 1347–1361 (1976). [CrossRef]
  22. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012). [CrossRef]
  23. J. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne, “Observation of quantum tunneling between two plasmonic nanoparticles,” Nano Lett. 13, 564–569 (2013). [CrossRef]
  24. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett. 12, 3308–3314 (2012). [CrossRef]
  25. A. I. Fernández-Domínguez, P. Zhang, Y. Luo, S. A. Maier, F. J. Garca-Vidal, and J. B. Pendry, “Transformation-optics insight into nonlocal effects in separated nanowires,” Phys. Rev. B 86, 241110 (2012). [CrossRef]
  26. A. I. Fernández-Domínguez, Y. Luo, A. Wiener, J. B. Pendry, and S. A. Maier, “Theory of three-dimensional nanocrescent light harvesters,” Nano Lett. 12, 5946–5953 (2012). [CrossRef]
  27. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009). [CrossRef]
  28. A. Manjavacas, F. J. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011). [CrossRef]
  29. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response,” Phys. Rev. Lett. 110, 263901 (2013). [CrossRef]
  30. Comsol Multiphysics, http://www.comsol.com/ .
  31. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006). [CrossRef]
  32. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs, “Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response,” Opt. Express 20, 4176–4188 (2012). [CrossRef]
  33. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492, 86–89 (2012). [CrossRef]
  34. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008). [CrossRef]
  35. A. Aubry, D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, S. A. Maier, and J. B. Pendry, “Plasmonic light-harvesting devices over the whole visible spectrum,” Nano Lett. 10, 2574–2579 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited