OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 10 — Oct. 1, 2013
  • pp: 2743–2757

Mid-infrared supercontinuum generation to 4.5  μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550  nm

Irnis Kubat, Christian S. Agger, Peter Morten Moselund, and Ole Bang  »View Author Affiliations

JOSA B, Vol. 30, Issue 10, pp. 2743-2757 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (2187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a numerical design optimization of step-index ZBLAN fibers for developing mid-infrared (IR) supercontinuum sources with spectra covering the 1–4.5 μm regime using direct pumping with 10 ps pulses (FWHM) from mode-locked Yb (12.5 kW peak power) and Er lasers (10 kW peak power). Even with optimum NA and core diameter to minimize confinement loss and give the most suitable dispersion and nonlinearity, the Yb pump-laser cannot push the spectrum beyond 1.52 μm, whereas the Er laser can push the spectrum to 4.15 μm. We further consider the optimum placement of a 20 cm taper to broaden the spectrum. This does not considerably broaden the Yb-pumped spectrum, whereas the Er-pumped spectrum can be extended to 4.5 μm through mid-IR dispersive waves and tunneling solitons.

© 2013 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(190.0190) Nonlinear optics : Nonlinear optics
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: June 19, 2013
Revised Manuscript: August 29, 2013
Manuscript Accepted: August 29, 2013
Published: September 30, 2013

Irnis Kubat, Christian S. Agger, Peter Morten Moselund, and Ole Bang, "Mid-infrared supercontinuum generation to 4.5  μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550  nm," J. Opt. Soc. Am. B 30, 2743-2757 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Moselund, C. Petersen, S. Dupont, C. Agger, O. Bang, and S. R. Keiding, “Supercontinuum—broad as a lamp bright as a laser, now in the mid-infrared,” Proc. SPIE 8381, 83811A (2012). [CrossRef]
  2. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20, 4887–4892 (2012). [CrossRef]
  3. S. Wartewig and R. H. H. Neubert, “Pharmaceutical applications of mid-IR and Raman spectroscopy,” Adv. Drug Delivery Rev. 57, 1144–1170 (2005). [CrossRef]
  4. C. A. Michaels, T. Masiello, and P. M. Chu, “Fourier transform spectrometry with a near-infrared supercontinuum source,” Appl. Spectrosc. 63, 538–543 (2009). [CrossRef]
  5. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “Quantum cascade laser: a versatile and powerfull tool,” Opt. Photon. News 19, 42–47 (2008).
  6. H. H. P. T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and R. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004). [CrossRef]
  7. F. K. Tittel and D. Richter, “Mid-infrared laser applications in spectroscopy in solid-state mid-infrared laser sources,” in Solid State Mid-Infrared Laser Sources, I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003).
  8. A. Mukherjee, S. V. der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49, 2072–2078 (2010). [CrossRef]
  9. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakander, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012). [CrossRef]
  10. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977). [CrossRef]
  11. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006). [CrossRef]
  12. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2, 432–442 (2012). [CrossRef]
  13. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15, 114–119 (2009). [CrossRef]
  14. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” http://www.sciencedirect.com/science/article/pii/S0022309313000173 (2013).
  15. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  16. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995). [CrossRef]
  17. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from nonsilica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749 (2007). [CrossRef]
  18. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010). [CrossRef]
  19. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006). [CrossRef]
  20. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 μm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34, 3616–3618 (2009). [CrossRef]
  21. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett. 97, 061106 (2010). [CrossRef]
  22. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013). [CrossRef]
  23. M. Liao, Z. Duan, W. Gao, X. Yan, T. Suzuki, and Y. Ohishi, “Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications,” Appl. Phys. B 105, 681–684 (2011). [CrossRef]
  24. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide silica step-index fibers,” Opt. Express 19, 21003–21010 (2011). [CrossRef]
  25. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871 (2007). [CrossRef]
  26. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009). [CrossRef]
  27. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, M. Neelakander, and A. Chan, “Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28, 2486–2498 (2011). [CrossRef]
  28. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012). [CrossRef]
  29. C. Lin, V. T. Nguyen, and W. G. French, “Wideband near-I.R. continuum (0.7–2.1 μm) generated in low-loss optical fibers,” Electron. Lett. 14, 822–823 (1978). [CrossRef]
  30. J. Shi, X. Feng, P. Horak, K. Chen, P. S. Teh, S.-U. Alam, W. Loh, D. Richardson, and M. Ibsen, “1.06 μm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient,” J. Lightwave Technol. 29, 3461–3469 (2011). [CrossRef]
  31. R. T. White and T. M. Monro, “Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers,” Opt. Lett. 36, 2351–2353 (2011). [CrossRef]
  32. C. Petersen, S. Dupont, C. Agger, J. Thøgersen, O. Bang, and S. R. Keiding, “Stimulated Raman scattering in soft glass fluoride fibers,” J. Opt. Soc. Am. B 28, 2310–2313 (2011). [CrossRef]
  33. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009). [CrossRef]
  34. FiberLabs, “Fluoride fibers in stock,” http://www.fiberlabs-inc.com/fiber-stock.htm (2012).
  35. U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012). [CrossRef]
  36. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36, 2596–2598 (2011). [CrossRef]
  37. J. Wu, S. Jiang, T. Luo, J. Geng, N. Peyghambarian, and N. P. Barnes, “Efficient thulium-doped 2-μm germanate fiber laser,” IEEE Photon. Technol. Lett. 18, 334–336 (2006). [CrossRef]
  38. OneFive GmbH, “Genki series,” http://www.onefive.com/genki.html (2012).
  39. Calmar Laser, Inc., “C-band femtosecond fiber laser bench top,” http://www.calmarlaser.com/docs/FPL_benchtop.pdf (2013).
  40. 3SPGroup, “Miniaturized pulsed laser transmitter,” http://www.3spgroup.com/3SPG/ProductsFlas.php?locale=enLine_no=23sub_category_id=5413cat_category_id=402 (2013).
  41. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]
  42. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). [CrossRef]
  43. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005). [CrossRef]
  44. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). [CrossRef]
  45. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). [CrossRef]
  46. N. Vukovic, N. G. R. Broderick, M. Petrovich, and G. Brambilla, “Novel method for the fabrication of long optical fiber tapers,” IEEE Photon. Technol. Lett. 20, 1264–1266 (2008). [CrossRef]
  47. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, “Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy,” Opt. Express 18, 16640–16645 (2010). [CrossRef]
  48. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010). [CrossRef]
  49. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010). [CrossRef]
  50. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinuum sources with optimum taper profies—verification of GAM,” Opt. Express 20, 10635–10645 (2012). [CrossRef]
  51. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum generation in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36, 1122–1124 (2011). [CrossRef]
  52. M. Liao, W. Gao, Z. Duan, T. S. Xin Yan, and Y. Ohishi, “Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length,” Opt. Express 20, 1141–1150 (2012).
  53. J. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  54. T. Nakai, N. Norimatsu, Y. Noda, O. Shinbori, and Y. Mimura, “Changes in refractive index of fluoride glass fibers during fiber fabrication processes,” Appl. Phys. Lett. 56, 203–205 (1990). [CrossRef]
  55. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion of fluoride glasses,” Appl. Phys. Lett. 33, 50–56 (1994).
  56. Thorlabs, “Fluoride fibers in stock,” http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7062 (2013).
  57. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  58. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973). [CrossRef]
  59. J. Lægsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
  60. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159–1166 (1989). [CrossRef]
  61. M. H. Frosz, “Supercontinuum generation in photonic crystal fibers,” Ph.D. thesis, Department of Communications, Optics, and Materials, 2006.
  62. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007). [CrossRef]
  63. A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulations,” www.photonics.incubadora.fapesp.br .
  64. A. M. Heidt, “Efficient adaptive step size method for simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27, 3984–3991 (2009). [CrossRef]
  65. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
  66. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  67. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express 21, 10764–10771 (2013). [CrossRef]
  68. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  69. P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Department of Photonics Engineering, Technical University of Denmark, 2009.
  70. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  71. N. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003). [CrossRef]
  72. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011). [CrossRef]
  73. S. Coen, D. A. Wardle, and J. D. Harvey, “Observation of non-phase-matched parametric amplification in resonant nonlinear optics,” Phys. Rev. Lett. 89, 273901 (2002). [CrossRef]
  74. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  75. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003). [CrossRef]
  76. A. C. Judge, O. Bang, and C. M. de Sterke, “Theory of Dispersive wave frequency shift via trapping by a soliton in an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 27, 2195–2202 (2010). [CrossRef]
  77. K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear fiber optics,” Opt. Lett. 38, 151–153 (2013). [CrossRef]
  78. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). [CrossRef]
  79. F. Poletti, P. Horak, and D. J. Richardson, “Soliton spectral tunneling in dispersion-controlled holey fibers,” IEEE Photon. Technol. Lett. 20, 1414–1416 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited