## Hyperconcentration for entanglement in two degrees of freedom |

JOSA B, Vol. 30, Issue 11, pp. 2774-2780 (2013)

http://dx.doi.org/10.1364/JOSAB.30.002774

Enhanced HTML Acrobat PDF (435 KB)

### Abstract

We present two hyperconcentration protocols for hyperentangled states, in which entanglement occurs simultaneously in the polarization and the spatial degrees of freedom. One uses an auxiliary single photon prepared in a fixed state. The other uses two less-entangled photon pairs. In both schemes, a two photon maximally hyperentangled state can be obtained from the nonmaximally entangled states with a certain success probability. The procrustean concentration is realized by polarizing beam splitters and nondestructive quantum nondemolition detection. In both protocols the unsuccessful instances can be reconcentrated repeatedly to get a higher success probability, which makes our schemes efficient and useful in quantum information processing.

© 2013 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5585) Quantum optics : Quantum information and processing

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: June 10, 2013

Manuscript Accepted: August 26, 2013

Published: October 2, 2013

**Citation**

Xi-Han Li, Xiao Chen, and Zhi Zeng, "Hyperconcentration for entanglement in two degrees of freedom," J. Opt. Soc. Am. B **30**, 2774-2780 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2774

Sort: Year | Journal | Reset

### References

- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
- C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
- P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
- J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005). [CrossRef]
- G. Vallone, R. Ceccarelli, F. De. Martini, and P. Mataloni, “Hyperentanglement of two photons in three degrees of freedom,” Phys. Rev. A 79, 030301(R) (2009). [CrossRef]
- J. T. Barreiro, T. C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008). [CrossRef]
- S. P. Walborn, M. P. Almeida, P. H. Souto Ribeiro, and C. H. Monken, “Quantum information processing with hyperentangled photon states,” Quantum Inf. Comput. 6, 336–350 (2006).
- C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002). [CrossRef]
- X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044304 (2010). [CrossRef]
- Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
- D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
- J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
- L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
- C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput. 11, 988–1002 (2011).
- Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
- M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
- Y. B. Sheng, F. G. Deng, and G. L. Long, “Multipartite electronic entanglement purification with charge detection,” Phys. Lett. A 375, 396–400 (2011). [CrossRef]
- C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052 (1996). [CrossRef]
- S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev A 60, 194–197 (1999). [CrossRef]
- B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A 62, 054301 (2000). [CrossRef]
- T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A 64, 012304 (2001). [CrossRef]
- Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A 64, 014301 (2001). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
- M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A 71, 044302 (2005). [CrossRef]
- Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A 73, 014303 (2006). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 0272 (2010).
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization entanglement concentration for electrons with charge detection,” Phys. Lett. A 373, 1823–1825 (2009). [CrossRef]
- B. C. Ren, T. J. Wang, M. Hua, F. F. Du, and F. G. Deng, “Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements,” e-print arXiv:quant-ph/1202.2163.
- Y. B. Sheng, L. Zhou, W. W. Cheng, L. Y. Gong, and S. M. Zhao, “Efficient electronic entanglement concentration assisted with single mobile electron,” e-print arXiv:quant-ph/1202.2666.
- A. Yildiz, “Optimal distillation of three-qubit W states,” Phys. Rev. A 82, 012317 (2010). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear optical scheme for entanglement concentration of two partially entangled three-photon states,” Eur. Phys. J. D 56, 271–275 (2010). [CrossRef]
- H. F. Wang, S. Zhang, and K. H. Yeon, “Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states,” J. Opt. Soc. Am. B 27, 2159–2164 (2010). [CrossRef]
- W. Xiong and L. Ye, “Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 28, 2030–2037 (2011). [CrossRef]
- L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]
- Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient two-step entanglement concentration for arbitrary W states,” Phys. Rev. A 85, 042302 (2012). [CrossRef]
- B. Gu, “Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics,” J. Opt. Soc. Am. B 29, 1685–1689 (2012). [CrossRef]
- Y. B. Sheng, L. Zhou, and S. M. Zhao, “Efficient entanglement concentration for three-photon W states with parity check measurement,” e-print arXiv:quant-ph/1202.2616.
- Y. B. Sheng, L. Zhou, Y. W. Sheng, and S. M. Zhao, “Efficient N-particle W state concentration with different parity check gates,” e-print arXiv:quant-ph/1204.1492.
- K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
- P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowing, and G. J. Milbum, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
- B. He, Q. Lin, and C. Simon, “Cross-Kerr nonlinearity between continuous-mode coherent states and single photons,” Phys. Rev. A 83, 053826 (2011). [CrossRef]
- A. Feizpour, X. Xing, and A. M. Steinberg, “Amplifying single-photon nonlinearity using weak measurements,” Phys. Rev. Lett. 107, 133603 (2011). [CrossRef]
- C. Zhu and G. Huang, “Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well structures,” Opt. Express 19, 23364–23376 (2011). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

OSA is a member of CrossRef.