OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2781–2786

Single-frame measurement of complex laser pulses tens of picoseconds long using pulse-front tilt in cross-correlation frequency-resolved optical gating

Tsz Chun Wong and Rick Trebino  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2781-2786 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002781


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the use of pulse-front tilt (PFT) in cross-correlation frequency-resolved optical gating (XFROG) implemented in polarization-gate geometry to measure arbitrary complex ultrashort pulses tens of picoseconds long on a single-camera frame with the potential for a single-shot measurement. The PFT is generated by a diffraction grating. We measured chirped double pulses separated by 4.7 and 24 ps with fine details and accurately retrieved them using the standard XFROG retrieval algorithm. The temporal range of our device is 28 ps, an order of magnitude longer than available from standard single-shot FROG devices without PFT.

© 2013 Optical Society of America

OCIS Codes
(320.0320) Ultrafast optics : Ultrafast optics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 17, 2013
Revised Manuscript: August 30, 2013
Manuscript Accepted: September 9, 2013
Published: October 3, 2013

Citation
Tsz Chun Wong and Rick Trebino, "Single-frame measurement of complex laser pulses tens of picoseconds long using pulse-front tilt in cross-correlation frequency-resolved optical gating," J. Opt. Soc. Am. B 30, 2781-2786 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2781


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33, 828–829 (1962). [CrossRef]
  2. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008). [CrossRef]
  3. K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang, “Tailoring a 67 attosecond pulse through advantageous phase-mismatch,” Opt. Lett. 37, 3891–3893 (2012). [CrossRef]
  4. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
  5. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Extremely simple device for measuring 20-fs pulses,” Opt. Lett. 29, 1025–1027 (2004). [CrossRef]
  6. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001). [CrossRef]
  7. L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25, A70–A80 (2008). [CrossRef]
  8. S. Linden, H. Giessen, and J. Kuhl, “XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119–124 (1998). [CrossRef]
  9. A. Yabushita, T. Fuji, and T. Kobayashi, “SHG FROG and XFROG methods for phase/intensity characterization of pulses propagated through an absorptive optical medium,” Opt. Commun. 198, 227–232 (2001). [CrossRef]
  10. Q. Cao, X. Gu, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, and R. S. Windeler, “Measurement of the intensity and phase of supercontinuum from an 8-mm-long microstructure fiber,” Appl. Phys. B 77, 239–244 (2003). [CrossRef]
  11. D. Lee, P. Gabolde, and R. Trebino, “Toward single-shot measurement of broadband ultrafast continuum,” J. Opt. Soc. Am. B 25, A25–A33 (2008). [CrossRef]
  12. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27, 1174–1176 (2002). [CrossRef]
  13. T. C. Wong, J. Ratner, V. Chauhan, J. Cohen, P. M. Vaughan, L. Xu, A. Consoli, and R. Trebino, “Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating,” J. Opt. Soc. Am. B 29, 1237–1244 (2012). [CrossRef]
  14. T. C. Wong, J. Ratner, and R. Trebino, “Simultaneous measurement of two different-color ultrashort pulses on a single shot,” J. Opt. Soc. Am. B 29, 1889–1893 (2012). [CrossRef]
  15. R. Kawakami, K. Sawada, A. Sato, T. Hibi, Y. Kozawa, S. Sato, H. Yokoyama, and T. Nemoto, “Visualizing hippocampal neurons with in vivo two-photon microscopy using a 1030  nm picosecond pulse laser,” Sci. Rep. 3, 1014 (2013). [CrossRef]
  16. G. Huettmann, B. Radt, J. Serbin, and R. Birngruber, “Inactivation of proteins by irradiation of gold nanoparticles with nano- and picosecond laser pulses,” Proc. SPIE 5142, 88–95 (2003). [CrossRef]
  17. P. L. Liu, R. Yen, N. Bloembergen, and R. T. Hodgson, “Picosecond laser-induced melting and resolidification morphology on Si,” Appl. Phys. Lett. 34, 864–866 (1979). [CrossRef]
  18. B. Zysset, J. G. Fujimoto, and T. F. Deutsch, “Time-resolved measurements of picosecond optical breakdown,” Appl. Phys. B 48, 139–147 (1989). [CrossRef]
  19. B. Zysset, J. G. Fujimoto, C. A. Puliafito, R. Birngruber, and T. F. Deutsch, “Picosecond optical breakdown: tissue effects and reduction of collateral damage,” Lasers Surg. Med. 9, 193–204 (1989). [CrossRef]
  20. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef]
  21. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quantum Electron. 35, 1156–1167 (1999). [CrossRef]
  22. B.-M. Kim, A. M. Komashko, A. M. Rubenchik, M. D. Feit, S. Reidt, L. B. D. Silva, and J. Eichler, “Interferometric analysis of ultrashort pulse laser-induced pressure waves in water,” J. Appl. Phys. 94, 709–715 (2003). [CrossRef]
  23. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19, 5602–5610 (2011). [CrossRef]
  24. B. Voisiat, M. Gedvilas, S. Indrišiūnas, and G. Račiukaitis, “Picosecond-laser 4-beam-interference ablation as a flexible tool for thin film microstructuring,” Phys. Procedia 12, 116–124 (2011). [CrossRef]
  25. T. Jiang, J. Koch, C. Unger, E. Fadeeva, A. Koroleva, Q. Zhao, and B. Chichkov, “Ultrashort picosecond laser processing of micro-molds for fabricating plastic parts with superhydrophobic surfaces,” Appl. Phys. A 108, 863–869 (2012). [CrossRef]
  26. R. Moser, M. Kunzer, C. Goßler, R. Schmidt, K. Köhler, W. Pletschen, U. T. Schwarz, and J. Wagner, “Laser processing of GaN-based LEDs with ultraviolet picosecond laser pulses,” Proc. SPIE 8433, 84330Q (2012). [CrossRef]
  27. R. Intartaglia, G. Das, K. Bagga, A. Gopalakrishnan, A. Genovese, M. Povia, E. Di Fabrizio, R. Cingolani, A. Diaspro, and F. Brandi, “Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications,” Phys. Chem. Chem. Phys. 15, 3075–3082 (2013). [CrossRef]
  28. Y. Pu, W. Wang, R. B. Dorshow, B. B. Das, and R. R. Alfano, “Review of ultrafast fluorescence polarization spectroscopy [Invited],” Appl. Opt. 52, 917–929 (2013). [CrossRef]
  29. D. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, and J. G. Fujimoto, “Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625  nm,” Arch. Ophthalmol. 107, 587–592 (1989). [CrossRef]
  30. X.-H. Hu and T. Juhasz, “Study of corneal ablation with picosecond laser pulses at 211  nm and 263  nm,” Lasers Surg. Med. 18, 373–380 (1996). [CrossRef]
  31. A. Vogel, S. Busch, K. Jungnickel, and R. Birngruber, “Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses,” Lasers Surg. Med. 15, 32–43 (1994). [CrossRef]
  32. J. M. Krauss and C. A. Puliafito, “Lasers in ophthalmology,” Lasers Surg. Med. 17, 102–159 (1995). [CrossRef]
  33. R. R. Krueger, T. Juhasz, A. Gualano, and V. Marchi, “The picosecond laser for nonmechanical laser in situ keratomileusis,” J. Refract. Surg. 14, 467–469 (1998).
  34. E. F. Bernstein, “Laser tattoo removal,” Semin. Plast. Surg. 21, 175–192 (2007). [CrossRef]
  35. N. Saedi, A. Metelitsa, K. Petrell, K. A. Arndt, and J. S. Dover, “Treatment of tattoos with a picosecond alexandrite laser: a prospective trial,” Arch. Dermatol. 148, 1360–1363 (2012). [CrossRef]
  36. N. I. Tankovich, A. M. Hunter, and K. Y. Tang, “Hair removal device and method,” U.S. patent6,267,771 (July31, 2001).
  37. M. H. Niemz, “Cavity preparation with the Nd:YLF picosecond laser,” J. Dent. Res. 74, 1194–1199 (1995). [CrossRef]
  38. A. A. Serafetinides, M. G. Khabbaz, M. I. Makropoulou, and A. K. Kar, “Picosecond laser ablation of dentine in endodontics,” Lasers Med. Sci. 14, 168–174 (1999). [CrossRef]
  39. M. S. Bello-Silva, M. Wehner, C. P. Eduardo, F. Lampert, R. Poprawe, M. Hermans, and M. Esteves-Oliveira, “Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters,” Lasers Med. Sci. 28, 171–184 (2013). [CrossRef]
  40. M. B. Strigin and A. N. Chudinov, “Cutting of glass by picosecond laser radiation,” Opt. Commun. 106, 223–226 (1994). [CrossRef]
  41. D. Shin, J. Lee, H. Sohn, J. Noh, and B. Paik, “A FPCB cutting process using a picosecond laser,” J. Laser Micro/Nanoeng. 5, 48–52 (2010).
  42. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996). [CrossRef]
  43. N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D 37, 638–643 (2004).
  44. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013). [CrossRef]
  45. J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16–18 (1967). [CrossRef]
  46. H. P. Weber and H. G. Danielmeyer, “Multimode effects in intensity correlation measurements,” Phys. Rev. A 2, 2074–2079 (1970). [CrossRef]
  47. E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348–350 (1972). [CrossRef]
  48. C. Lee and S. Jayaraman, “Measurement of ultrashort optical pulses by two-photon photoconductivity techniques,” Opto-electronics 6, 115–120 (1974). [CrossRef]
  49. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658–660 (1992). [CrossRef]
  50. P. Sperber and A. Penzkofer, “Pulse-shape determination of intracavity compressed picosecond pulses by two-photon fluorescence analysis,” Opt. Quantum Electron. 18, 145–154 (1986). [CrossRef]
  51. J. A. Giordmaine, P. M. Rentzepis, S. L. Shapiro, and K. W. Wecht, “Two-photon excitation of fluorescence by picosecnd light pulses,” Appl. Phys. Lett. 11, 216–218 (1967). [CrossRef]
  52. S. Luan, M. H. R. Hutchinson, R. A. Smith, and F. Zhou, “High dynamic range third-order correlation measurement of picosecond laser pulse shapes,” Meas. Sci. Technol. 4, 1426–1429 (1993). [CrossRef]
  53. H. P. Weber and R. Dändliker, “Method for measurement the shape asymmetry of picosecond light pulses,” Phys. Lett. A 28, 77–78 (1968). [CrossRef]
  54. T. Mindl, P. Hefferle, S. Schneider, and F. Dörr, “Characterisation of a train of subpicosecond laser pulses by fringe resolved autocorrelation measurements,” Appl. Phys. B 31, 201–207 (1983). [CrossRef]
  55. P. Yeh, “Autocorrelation of ultrashort optical pulses using polarization interferometry,” Opt. Lett. 8, 330–332 (1983). [CrossRef]
  56. J. Ratner, G. Steinmeyer, T. C. Wong, R. Bartels, and R. Trebino, “Coherent artifact in modern pulse measurements,” Opt. Lett. 37, 2874–2876 (2012). [CrossRef]
  57. M. Rhodes, G. Steinmeyer, J. Ratner, and R. Trebino, “Pulse-shape instabilities and their measurement,” Laser Photon. Rev. 7, 557–565 (2013). [CrossRef]
  58. R. Wyatt and E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981). [CrossRef]
  59. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19, 1367–1377 (2011). [CrossRef]
  60. R. Trebino, “Ultrafast Optics Group in Georgia Institute of Technology,” http://frog.gatech.edu/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited