Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Model for describing plasmon-enhanced lasers that combines rate equations with finite-difference time-domain

Not Accessible

Your library or personal account may give you access

Abstract

We report a theoretical study of lasing when plasmonic metallic structures are embedded in a gain medium. The model used is a dynamic semi-quantum approach that accounts for stimulated and spontaneous emission wherein molecules constituting the laser dye are described using a four-level rate equation model, which is coupled to an electrodynamics description of the entire system including metal particles. Based on 3D simulations in which electromagnetic fields for both the pump and emitted photons are accurately determined for an array of elliptical gold nanorods, we numerically demonstrate lasing action above an intensity threshold for a narrow range of wavelengths close to the plasmon maximum. We also show numerically that this lasing action clamps the population inversion above threshold. The dye molecule photophysics near the nanoparticle was also studied, and it is demonstrated that stimulated emission dominates over spontaneous emission above threshold, with most of the stimulated emission being associated with the near-field region near the metal nanorods. The effect of the Purcell factor on the lasing action is also studied. This theoretical work provides the basic framework for investigation and optimization of light emission arising from the coupling of gain media and plasmonic nanostructures.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Lasing action in periodic arrays of nanoparticles

Montacer Dridi and George C. Schatz
J. Opt. Soc. Am. B 32(5) 818-823 (2015)

Rigorous broadband investigation of liquid-crystal plasmonic structures using finite-difference time-domain dispersive-anisotropic models

Konstantinos P. Prokopidis, Dimitrios C. Zografopoulos, and Emmanouil E. Kriezis
J. Opt. Soc. Am. B 30(10) 2722-2730 (2013)

Effect of plasmonic mode on plasmon-based lasers

Montacer Dridi, Florent Colas, and Chantal Compère
J. Opt. Soc. Am. B 35(12) 3110-3115 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved