OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2855–2863

Electromagnetically induced transparency and slow light in quantum degenerate atomic gases

H. H. Jen, Bo Xiong, Ite A. Yu, and Daw-Wei Wang  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2855-2863 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We systematically investigate the electromagnetically induced transparency (EIT) and slow light properties in ultracold Bose and Fermi gases. It shows a very different property from the classical theory, which assumes frozen atomic motion. For example, the speed of light inside the atomic gases can be changed significantly near the Bose–Einstein condensation temperature, while the presence of the Fermi sea can destroy the EIT effect even at zero temperature. From an experimental point of view, such quantum EIT property is mostly manifested in the counterpropagating excitation schemes in either the low-lying Rydberg transition with a narrow linewidth or in the D2 transitions with a weak coupling field. We further investigate the interaction effects on the EIT for a weakly interacting Bose–Einstein condensate, showing an inhomogeneous broadening of the EIT profile and nontrivial change of the light speed due to the quantum depletion other than mean-field energy shifts.

© 2013 Optical Society of America

OCIS Codes
(020.5780) Atomic and molecular physics : Rydberg states
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

Original Manuscript: June 19, 2013
Revised Manuscript: August 15, 2013
Manuscript Accepted: September 15, 2013
Published: October 10, 2013

H. H. Jen, Bo Xiong, Ite A. Yu, and Daw-Wei Wang, "Electromagnetically induced transparency and slow light in quantum degenerate atomic gases," J. Opt. Soc. Am. B 30, 2855-2863 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Lukin, “Colloquium: trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. K. Hamerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041–1093 (2010). [CrossRef]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  5. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  6. S.-W. Su, Y.-H. Chen, S.-C. Gou, T.-L. Horng, and I. A. Yu, “Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: a numerical approach,” Phys. Rev. A 83, 013827 (2011). [CrossRef]
  7. Z. Dutton and L. Vestergaard Hau, “Storing and processing optical information with ultraslow light in Bose–Einstein condensates,” Phys. Rev. A 70, 053831 (2004). [CrossRef]
  8. V. Ahufinger, R. Corbalán, F. Cataliotti, S. Burger, F. Minardi, and C. Fort, “Electromagnetically induced transparency in a Bose–Einstein condensate,” Opt. Commun. 211, 159–165 (2002). [CrossRef]
  9. G. Morigi and G. S. Agarwal, “Temperature variation of ultraslow light in a cold gas,” Phys. Rev. A 62, 013801 (2000). [CrossRef]
  10. Ö. Ë. Müstecaplioglu and L. You, “Propagation of Raman-matched laser pulses through a Bose–Einstein condensate,” Opt. Commun. 193, 301–312 (2001). [CrossRef]
  11. M. Saffman and T. G. Waller, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  12. T. F. Gallagher, Rydberg Atoms (Cambridge University, 1994).
  13. I. Carusotto, M. Artoni, and G. C. La Rocca, “Atomic recoil effects in slow light propagation,” JETP Lett. 72, 289–293 (2000). [CrossRef]
  14. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628–631 (2001). [CrossRef]
  15. S.-W. Su, Y.-H. Chen, S.-C. Gou, and I. A. Yu, “An effective thermal-parametrization theory for the slow-light dynamics in a Doppler-broadened electromagnetically induced transparency medium,” J. Phys. B 44, 165504 (2011). [CrossRef]
  16. E. Cerboneschi, F. Renzoni, and E. Arimondo, “Relaxation processes in slow light: the role of the atomic momentum,” Opt. Commun. 204, 211–217 (2002). [CrossRef]
  17. F. Zimmer and M. Fleischhauer, “Sagnac interferometry based on ultraslow polaritons in cold atomic vapors,” Phys. Rev. Lett. 92, 253201 (2004). [CrossRef]
  18. H. H. Jen and D.-W. Wang, “Theory of electromagnetically induced transparency in strongly correlated quantum gases,” Phys. Rev. A 87, 061802(R) (2013). [CrossRef]
  19. L. Jiang, H. Pu, W. Zhang, and H. Y. Ling, “Detection of Fermi pairing via electromagnetically induced transparency,” Phys. Rev. A 80, 033606 (2009). [CrossRef]
  20. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  21. F. Gounand, “Calculation of radial matrix elements and radiative lifetimes for highly excited states of alkali atoms using Coulomb approximation,” J. Phys. 40, 457–460 (1979). [CrossRef]
  22. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004). [CrossRef]
  23. K. Singer, J. Stanojevic, M. Weidemüller, and R. Côté, “Long-range interactions between alkali Rydberg atom pairs correlated to the ns-ns, np-np and nd-nd asymptotes,” J. Phys. B 38, S295–S307 (2005). [CrossRef]
  24. R. Löw, H. Weimer, U. Krohn, R. Heidemann, V. Bendkowsky, B. Butscher, H. P. Büchler, and T. Pfau, “Universal scaling in a strongly interacting Rydberg gas,” Phys. Rev. A 80, 033422 (2009). [CrossRef]
  25. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, “Evidence for coherent collective Rydberg excitation in the strong blockade regime,” Phys. Rev. Lett. 99, 163601 (2007). [CrossRef]
  26. C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University, 2002).
  27. G. V. Marr and D. M. Creek, “The absorption oscillator strengths in alkali metal vapours,” Proc. R. Soc. Edin. Sect. A 304, 245–254 (1968). [CrossRef]
  28. E. Caliebe and K. Niemax, “Oscillator strengths of the principal series lines of Rb,” J. Phys. B 12, L45–L51 (1979). [CrossRef]
  29. D. Hofsaess, “Photoabsorption of alkali and alkaline earth elements calculated by the scaled Thomas Fermi method,” Z. Phys. A 281, 1–13 (1977). [CrossRef]
  30. B. Kaltenhäuser, H. Kübler, A. Chromik, J. Stuhler, T. Pfau, and A. Imamoglu, “Narrow bandwidth electromagnetically induced transparency in optically trapped atoms,” J. Phys. B 40, 1907–1915 (2007). [CrossRef]
  31. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005). [CrossRef]
  32. M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals,” Nat. Photonics 5, 633–636 (2011). [CrossRef]
  33. L. Zhou, K. Zhang, B. Zhu, Y. Li, and W. Zhang, “Phase detection in an ultracold polarized Fermi gas via electromagnetically induced transparency,” Phys. Lett. A 376, 919–924 (2012). [CrossRef]
  34. S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Côté, E. E. Eyler, and P. L. Gould, “Long-range molecular resonances in a cold Rydberg gas,” Phys. Rev. Lett. 91, 183002 (2003). [CrossRef]
  35. R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009). [CrossRef]
  36. Y.-J. Lin, R. L. Compton, K.-J. Garcia, J. V. Porto, and I. B. Spielman, “Synthetic magnetic fields for ultracold neutral atoms,” Nature 462, 628–632 (2009). [CrossRef]
  37. Y.-J. Lin, K.-J. Garcia, and I. B. Spielman, “Spin-orbit-coupled Bose–Einstein condensates,” Nature 471, 83–86 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited