OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2875–2881

Tripartite entanglement of microwave radiation via nonlinear parametric interactions enhanced by quantum interference in superconducting quantum circuits

Guang-ling Cheng, Ai-xi Chen, and Wen-xue Zhong  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2875-2881 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002875


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an efficient scheme for generating the tripartite continuous variable entanglement of microwave radiation in a Δ-type three-level artificial atom placed in a transmission line resonator, simultaneously driven resonantly by two strong electromagnetic fields. We show that it is possible to obtain the full tripartite entanglement with the different frequencies in the presence of atom and cavity decays. In our scheme, interestingly, the nonlinear process of simultaneous parametric downconversion and upconversion interactions between microwave modes can be achieved via quantum interference induced by two classical fields and can be greatly enhanced under the condition of resonant driving of the two classical fields. Such a nonlinear interaction is responsible for the generation of the strong tripartite entanglement among three microwave modes. In practice, the system considered here could offer an alternative for implementing the scalable information processing in the solid-state system.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.1670) Quantum optics : Coherent optical effects
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

History
Original Manuscript: July 23, 2013
Revised Manuscript: August 25, 2013
Manuscript Accepted: September 17, 2013
Published: October 11, 2013

Citation
Guang-ling Cheng, Ai-xi Chen, and Wen-xue Zhong, "Tripartite entanglement of microwave radiation via nonlinear parametric interactions enhanced by quantum interference in superconducting quantum circuits," J. Opt. Soc. Am. B 30, 2875-2881 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  2. P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
  3. J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
  4. J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
  5. C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013). [CrossRef]
  6. T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
  7. X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
  8. N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,” Phys. Rev. A 83, 062314 (2011). [CrossRef]
  9. M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
  10. A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
  11. A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
  12. A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
  13. J. Guo, Z. Zhai, and J. Gao, “Bright quadripartite continuous variable entanglement from coupled intracavity nonlinearities,” J. Opt. Soc. Am. B 27, 518–523 (2010). [CrossRef]
  14. Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
  15. C. Y. Zhao, W. H. Tan, J. R. Xu, and F. Ge, “Multipartite continuous-variable entanglement in nondegenerate optical parametric amplification system,” J. Opt. Soc. Am. B 28, 1067–1076 (2011). [CrossRef]
  16. Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
  17. H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
  18. S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
  19. X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
  20. X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
  21. G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
  22. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
  23. S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
  24. C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, “Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber,” Opt. Express 16, 2720–2739 (2008). [CrossRef]
  25. G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
  26. Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
  27. R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
  28. F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
  29. X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
  30. X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
  31. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
  32. X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
  33. A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
  34. Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
  35. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
  36. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
  37. W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
  38. J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
  39. W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
  40. P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
  41. S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
  42. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
  43. A. F. Obada, H. A. Hessian, A. A. Mohamed, and A. H. Homid, “Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity,” J. Opt. Soc. Am. B 30, 1178–1185 (2013). [CrossRef]
  44. C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
  45. D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
  46. P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
  47. V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
  48. H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
  49. M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
  50. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited