Optics InfoBase > JOSA B > Volume 30 > Issue 11 > Page 2875
Tripartite entanglement of microwave radiation via nonlinear parametric interactions enhanced by quantum interference in superconducting quantum circuitsGuang-ling Cheng, Ai-xi Chen, and Wen-xue Zhong »View Author Affiliations
Guang-ling Cheng,^{1,}^{2}
Ai-xi Chen,^{1,}^{3}
and Wen-xue Zhong^{1}
^{1}Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China ^{2}e-mail: glingcheng@ecjtu.jx.cn ^{3}e-mail: aixichen@ecjtu.jx.cn |
JOSA B, Vol. 30, Issue 11, pp. 2875-2881 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002875
View Full Text Article
Enhanced HTML Acrobat PDF (347 KB)
Abstract
We present an efficient scheme for generating the tripartite continuous variable entanglement of microwave radiation in a
© 2013 Optical Society of America
OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.1670) Quantum optics : Coherent optical effects
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
ToC Category:
Quantum Optics
History
Original Manuscript: July 23, 2013
Revised Manuscript: August 25, 2013
Manuscript Accepted: September 17, 2013
Published: October 11, 2013
Citation
Guang-ling Cheng, Ai-xi Chen, and Wen-xue Zhong, "Tripartite entanglement of microwave radiation via nonlinear parametric interactions enhanced by quantum interference in superconducting quantum circuits," J. Opt. Soc. Am. B 30, 2875-2881 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2875
Sort: Author | Year | Journal | Reset
References
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,” Phys. Rev. A 83, 062314 (2011). [CrossRef]
- M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- J. Guo, Z. Zhai, and J. Gao, “Bright quadripartite continuous variable entanglement from coupled intracavity nonlinearities,” J. Opt. Soc. Am. B 27, 518–523 (2010). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- C. Y. Zhao, W. H. Tan, J. R. Xu, and F. Ge, “Multipartite continuous-variable entanglement in nondegenerate optical parametric amplification system,” J. Opt. Soc. Am. B 28, 1067–1076 (2011). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, “Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber,” Opt. Express 16, 2720–2739 (2008). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- A. F. Obada, H. A. Hessian, A. A. Mohamed, and A. H. Homid, “Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity,” J. Opt. Soc. Am. B 30, 1178–1185 (2013). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
- P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,” Phys. Rev. A 83, 062314 (2011). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
- C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
- Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
- X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
Appl. Phys. Lett.
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
Fortschr. Phys.
- D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
J. Mod. Opt.
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
J. Opt. Soc. Am. B
- A. Ferraro, M. G. A. Paris, A. Allevi, A. Andreoni, M. Bondani, and E. Puddu, “Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media,” J. Opt. Soc. Am. B 21, 1241–1249 (2004). [CrossRef]
- J. Guo, Z. Zhai, and J. Gao, “Bright quadripartite continuous variable entanglement from coupled intracavity nonlinearities,” J. Opt. Soc. Am. B 27, 518–523 (2010). [CrossRef]
- C. Y. Zhao, W. H. Tan, J. R. Xu, and F. Ge, “Multipartite continuous-variable entanglement in nondegenerate optical parametric amplification system,” J. Opt. Soc. Am. B 28, 1067–1076 (2011). [CrossRef]
- A. F. Obada, H. A. Hessian, A. A. Mohamed, and A. H. Homid, “Implementing discrete quantum Fourier transform via superconducting qubits coupled to a superconducting cavity,” J. Opt. Soc. Am. B 30, 1178–1185 (2013). [CrossRef]
J. Phys. B
- X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
Nature
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
Opt. Express
- C. J. McKinstrie, S. J. van Enk, M. G. Raymer, and S. Radic, “Multicolor multipartite entanglement produced by vector four-wave mixing in a fiber,” Opt. Express 16, 2720–2739 (2008). [CrossRef]
Opt. Lett.
- A. Allevi, A. Andreoni, M. Bondani, E. Puddu, A. Ferraro, and M. G. A. Paris, “Properties of two interlinked χ(2) interactions in noncollinear phase matching,” Opt. Lett. 29, 180–182 (2004). [CrossRef]
- Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
Phys. Rev. A
- P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,” Phys. Rev. A 83, 062314 (2011). [CrossRef]
- M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
Phys. Rev. B
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
Phys. Rev. Lett
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
Phys. Rev. Lett.
- P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
Rev. Mod. Phys.
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
Science
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
2013, Weedbrook, Phys. Rev. A
- C. Weedbrook, “Continuous-variable quantum key distribution with entanglement in the middle,” Phys. Rev. A 87, 022308 (2013). [CrossRef]
- A. A. Valido, L. A. Correa, and D. Alonso, “Gaussian tripartite entanglement out of equilibrium,” Phys. Rev. A 88, 012309 (2013). [CrossRef]
- C. P. Yang, Q. P. Su, S. B. Zheng, and S. Y. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013). [CrossRef]
- V. E. Manucharyan, N. A. Masluk, A. Kamal, J. Koch, L. I. Glazman, and M. H. Devoret, “Evidence for coherent quantum phase slips across a Josephson junction array,” Phys. Rev. B 85, 064521 (2012). [CrossRef]
- A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar superconducting resonators with internal quality factors above one million,” Appl. Phys. Lett. 100, 113510 (2012). [CrossRef]
- P. M. Leung and B. C. Sanders, “Coherent control of microwave pulse storage in superconducting circuits,” Phys. Rev. Lett. 109, 253603 (2012). [CrossRef]
- X. Liang, X. M. Hu, and C. He, “Creating multimode squeezed states and Greenberger–Horne–Zeilinger entangled states using atomic coherent effects,” Phys. Rev. A 85, 032329 (2012). [CrossRef]
- X. H. Yang, Y. Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012). [CrossRef]
- Y. Gu, G. Q. He, and X. F. Wu, “Generation of six-partite continuous-variable entanglement using a nonlinear photonic crystal by frequency conversions,” Phys. Rev. A 85, 052328 (2012). [CrossRef]
- N. C. Menicucci, “Temporal-mode continuous-variable cluster states using linear optics,” Phys. Rev. A 83, 062314 (2011). [CrossRef]
- Y. B. Yu, J. T. Sheng, and M. Xiao, “Generation of bright quadricolor continuous-variable entanglement by four-wave-mixing process,” Phys. Rev. A 83, 012321 (2011). [CrossRef]
- W. Z. Jia, L. F. Wei, and Z. D. Wang, “Tunable one-dimensional microwave emissions from cyclic-transition three-level artificial atoms,” Phys. Rev. A 83, 023811 (2011). [CrossRef]
- H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, “Deterministic entanglement of photons in two superconducting microwave resonators,” Phys. Rev. Lett. 106, 060401 (2011). [CrossRef]
- L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010). [CrossRef]
- O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science 327, 840–843 (2010). [CrossRef]
- W. R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T. A. Ohki, J. S. Kline, and D. P. Pappas, “Direct observation of coherent population trapping in a superconducting artificial atom,” Phys. Rev. Lett. 104, 163601 (2010). [CrossRef]
- J. Joo, J. Bourassa, A. Blais, and B. C. Sanders, “Electromagnetically induced transparency with amplification in superconducting circuits,” Phys. Rev. Lett. 105, 073601 (2010). [CrossRef]
- X. M. Hu and X. Li, “Quantum interference in enhanced parametric interactions,” J. Phys. B 43, 055502 (2010). [CrossRef]
- X. Y. Lü, P. Huang, W. X. Yang, and X. X. Yang, “Entanglement via atomic coherence induced by two strong classical fields,” Phys. Rev. A 80, 032305 (2009). [CrossRef]
- M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, and A. Wallraff, “Measurement of Autler–Townes and Mollow transitions in a strongly driven superconducting qubit,” Phys. Rev. Lett. 102, 243602 (2009). [CrossRef]
- S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008). [CrossRef]
- X. M. Hu and J. H. Zou, “Quantum-beat lasers as bright sources of entangled sub-Poissonian light,” Phys. Rev. A 78, 045801 (2008). [CrossRef]
- J. Zhang, C. D. Xie, K. C. Peng, and P. van Loock, “Continuous-variable telecloning with phase-conjugate inputs,” Phys. Rev. A 77, 022316 (2008). [CrossRef]
- G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008). [CrossRef]
- X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, and K. C. Peng, “Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables,” Phys. Rev. Lett. 98, 070502 (2007). [CrossRef]
- G. X. Li, H. T. Tan, and M. Macovei, “Enhancement of entanglement for two-mode fields generated from four-wave mixing with the help of the auxiliary atomic transition,” Phys. Rev. A 76, 053827 (2007). [CrossRef]
- S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich, “Generation of Einstein–Podolsky–Rosen entangled radiation through an atomic reservoir,” Phys. Rev. Lett. 98, 240401 (2007). [CrossRef]
- M. K. Olsen and A. S. Bradley, “Asymmetric polychromatic tripartite entanglement from interlinked χ(2) parametric interactions,” Phys. Rev. A 74, 063809 (2006). [CrossRef]
- R. Guzmán, J. C. Retamal, E. Solano, and N. Zagury, “Field squeeze operators in optical cavities with atomic ensembles,” Phys. Rev. Lett. 96, 010502 (2006). [CrossRef]
- F. O. Prado, N. G. de Almeida, M. H. Y. Moussa, and C. J. Villas-Bôas, “Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics,” Phys. Rev. A 73, 043803 (2006). [CrossRef]
- S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett 94, 100502 (2005). [CrossRef]
- S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
- H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005). [CrossRef]
- A. Allevi, A. Bondani, A. Ferraro, M. G. A. Paris, and E. Puddu, “Quantum and classical properties of the fields generated by two interlinked second-order non-linear interactions,” J. Mod. Opt. 51, 1031–1036 (2004). [CrossRef]
- Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004). [CrossRef]
- A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431, 162–167 (2004). [CrossRef]
- P. van Loock and A. Furusawa, “Detecting genuine multipartite continuous-variable entanglement,” Phys. Rev. A 67, 052315 (2003). [CrossRef]
- J. T. Jing, J. Zhang, Y. Yan, F. G. Zhao, C. D. Xie, and K. C. Peng, “Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables,” Phys. Rev. Lett. 90, 167903 (2003). [CrossRef]
- T. Aoki, N. Takei, H. Yonezawa, K. Wakui, T. Hiraoka, A. Furusawa, and P. van Loock, “Experimental creation of a fully inseparable tripartite continuous-variable state,” Phys. Rev. Lett. 91, 080404 (2003). [CrossRef]
- Y. Makhlin, G. Schön, and A. Shnirman, “Quantum-state engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357–400 (2001). [CrossRef]
- P. van Loock and S. L. Braunstein, “Multipartite entanglement for continuous variables: a quantum teleportation network,” Phys. Rev. Lett. 84, 3482–3485 (2000). [CrossRef]
- D. F. V. James, “Quantum computation with hot and cold ions: an assessment of proposed schemes,” Fortschr. Phys. 48, 823–837 (2000). [CrossRef]
- Y. Wu and X. X. Yang, “Effective two-level model for a three-level atom in the cascade configuration,” Phys. Rev. A 56, 2443–2446 (1997). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Related Journal Articles
- Pattern formation in the presence of walk-off for a type II optical parametric oscillator (JOSAB)
- Efficient gas-phase generation of coherent vacuum ultraviolet radiation (OL)
- Generation of continuous-wave terahertz radiation by use of quantum interference (JOSAB)
- Modification of local field effects in two level systems due to quantum corrections (OE)
- Inversionless gain in an optically-dense resonant Doppler-broadened medium (OE)
Related Conference Papers
- Environmental Noise on a Qubit Through Entanglement with a Quantum Circuit
- Environmental Noise on a Qubit Through Entanglement with a Quantum Circuit
- Maximum-likelihood estimation of quantum processes
- Maximum-likelihood estimation of quantum processes
- Robust control of realistic quantum gates
- Robust control of realistic quantum gates
- Temporal Control of Correlated Photons in Noncollinear Type-I Parametric Down-Conversion
- Temporal Control of Correlated Photons in Noncollinear Type-I Parametric Down-Conversion
« Previous Article | Next Article »
OSA is a member of CrossRef.
- Firefox 11+
- Google Chrome 17+
- Internet Explorer 9+
- Safari 5+