OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2882–2888

Terahertz emission from ZnGeP2: phase-matching, intensity, and length scalability

Joseph D. Rowley, Derek A. Bas, Kevin T. Zawilski, Peter G. Schunemann, and Alan D. Bristow  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2882-2888 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Collinear phase-matched optical rectification is studied in ZnGeP2 pumped with near-infrared light. The pump-intensity dependence is presented for three crystal lengths (0.3, 1.0, and 3.0 mm) to determine the effects of linear optical absorption, nonlinear optical absorption, and terahertz free-carrier absorption on the generation. Critical parameters such as the coherence length (for velocity matching), dispersion length (for linear pulse broadening), and nonlinear length (for self-phase modulation) are determined for this material. These parameters provide insight into the upper limit of pulse intensity and crystal length required to generate intense terahertz pulses without detriment to the pulse shape. It is found that 1 mm thick ZnGeP2(012), pumped at 1.28 μm with intensity of 15GW/cm2, will produce intense undistorted pulses, whereas longer crystals or larger intensities modify the pulse shape to varying degrees. Moreover, phase-matching dispersion maps are presented for the terahertz generation over a large tuning range (1.1–2.4 μm) in the longer (3 mm) crystal, demonstrating the phase-matching bandwidth and phase mismatch that leads to fringing associated with multipulse interference. All observed results are simulated numerically showing good qualitative agreement.

© 2013 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.6080) Optical devices : Sources
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: June 4, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: September 18, 2013
Published: October 15, 2013

Joseph D. Rowley, Derek A. Bas, Kevin T. Zawilski, Peter G. Schunemann, and Alan D. Bristow, "Terahertz emission from ZnGeP2: phase-matching, intensity, and length scalability," J. Opt. Soc. Am. B 30, 2882-2888 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543–586 (2011). [CrossRef]
  2. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5, 31–34 (2011). [CrossRef]
  3. Z. D. Taylor, R. S. Singh, D. B. Bennett, P. Tewari, C. P. Kealey, N. Bajwa, M. O. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. R. Brown, and W. S. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011). [CrossRef]
  4. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010). [CrossRef]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  6. H.-W. Hübers, “Terahertz technology: towards THz integrated photonics,” Nat. Photonics 4, 503–504 (2010). [CrossRef]
  7. F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.-C. Bandulet, F. Vidal, R. Morandotti, J.-C. Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. Hegmann, “Generation of intense terahertz radiation via optical methods,” IEEE J. Sel. Top. Quant. Electron. 17, 5–16 (2011). [CrossRef]
  8. M. C. Hoffmann and F. J. András, “Intense ultrashort terahertz pulses: generation and applications,” J. Phys. D 44, 1–13 (2011).
  9. M. Hangyo, M. Tani, and T. Nagashima, “Terahertz time-domain spectroscopy of solids: a review,” Int. J. Infrared Millim. Waves 26, 1661–1690 (2005). [CrossRef]
  10. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. 104, 1759–1780 (2004). [CrossRef]
  11. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010). [CrossRef]
  12. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035  nm,” Opt. Express 15, 11706–11713 (2007). [CrossRef]
  13. M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28, 1724–1734 (2011). [CrossRef]
  14. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photon. Rev. 2, 11–25 (2008). [CrossRef]
  15. J.-P. Negel, R. Hegenbarth, A. Steinmann, B. Metzger, F. Hoos, and H. Giessen, “Compact and cost-effective scheme for THz generation via optical rectification in GaP and GaAs using novel fs laser oscillators,” Appl. Phys. B 103, 45–50 (2011). [CrossRef]
  16. M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, “Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56  μm fiber laser pulses,” Appl. Phys. Lett. 85, 3974–3976 (2004). [CrossRef]
  17. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909–7913 (2006). [CrossRef]
  18. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006). [CrossRef]
  19. L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer, and R. Byer, “Diffusion-bonded stacked GaAs for quasiphase-matched second-harmonic generation of a carbon dioxide laser,” Electron. Lett. 29, 1942–1944 (1993). [CrossRef]
  20. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001). [CrossRef]
  21. T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, “Large-area electro-optic ZnTe terahertz emitters,” Opt. Express 13, 5353–5362 (2005). [CrossRef]
  22. F. Blanchard, L. Razzari, H. C. Bandulet, G. Sharma, R. Morandotti, J. C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, “Generation of 1.5  μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,” Opt. Express 15, 13212–13220 (2007). [CrossRef]
  23. J. D. Rowley, J. K. Pierce, A. T. Brant, L. E. Halliburton, N. C. Giles, P. G. Schunemann, and A. D. Bristow, “Broadband terahertz pulse emission from ZnGeP2,” Opt. Lett. 37, 788–790 (2012). [CrossRef]
  24. J. D. Rowley, J. K. Wahlstrand, K. T. Zawilski, P. G. Schunemann, N. C. Giles, and A. D. Bristow, “Terahertz generation by optical rectification in uniaxial birefringent crystals,” Opt. Express 20, 16968–16973 (2012). [CrossRef]
  25. N. C. J. van der Valk, P. C. M. Planken, A. N. Buijserd, and H. J. Bakker, “Influence of pump wavelength and crystal length on the phase matching of optical rectification,” J. Opt. Soc. Am. B 22, 1714–1718 (2005). [CrossRef]
  26. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94, 6447–6455 (2003). [CrossRef]
  27. F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000). [CrossRef]
  28. W. J. Moore and R. T. Holm, “Infrared dielectric constant of gallium arsenide,” J. Appl. Phys. 80, 6939–6942 (1996). [CrossRef]
  29. A. S. Barker, “Dielectric dispersion and phonon line shape in gallium phosphide,” Phys. Rev. 165, 917–922 (1968). [CrossRef]
  30. V. V. Voitsekhovskii, A. A. Volkov, G. A. Komandin, and Y. A. Shakir, “Dielectric properties of ZnGeP2 in the far infrared,” Phys. Solid State 37, 1198–1199 (1995).
  31. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth 310, 1891–1896 (2008). [CrossRef]
  32. J. Faure, J. V. Tilborg, R. A. Kaindl, and W. P. Leemans, “Modelling laser-based table-top THz sources: optical rectification, propagation and electro-optic sampling,” Opt. Quant. Electron. 36, 681–697 (2004). [CrossRef]
  33. S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe (110),” J. Appl. Phys. 107, 033526 (2010). [CrossRef]
  34. D. Côté, N. Laman, and H. M. van Driel, “Rectification and shift currents in GaAs,” Appl. Phys. Lett. 80, 905–907 (2002). [CrossRef]
  35. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, 2003).
  36. K. V. Adarsh, K. S. Sangunni, C. S. S. Sandeep, R. Philip, S. Kokenyesi, and V. Takats, “Observation of three-photon absorption and saturation of two-photon absorption in amorphous nanolayered Se/As2S3 thin film structures,” J. Appl. Phys. 102, 026102 (2007). [CrossRef]
  37. M. Nagai, M. Jewariya, Y. Ichikawa, H. Ohtake, T. Sugiura, Y. Uehara, and K. Tanaka, “Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via χ(2) cascaded processes in LiNbO3,” Opt. Express 17, 11543–11549 (2009). [CrossRef]
  38. D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe Crystals with chirped femtosecond laser pulses,” J. Infrared Millim. Terahz. Waves 32, 1371–1381 (2011). [CrossRef]
  39. K. Wynne and J. J. Carey, “An integrated description of terahertz generation through optical rectification, charge transfer, and current surge,” Opt. Commun. 256, 400–413 (2005). [CrossRef]
  40. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited