OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2889–2897

Frequency-dissymmetric parametric sideband generation in a microstructured fiber

Margaux Barbier, Philippe Leproux, Philippe Roy, and Philippe Delaye  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2889-2897 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002889


View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate the nonlinear generation of frequency-dissymmetric sidebands by injecting picosecond pump pulses inside the fundamental mode of a silica-core photonic crystal fiber in its normal dispersion regime. A systematic analysis highlights the fact that this phenomenon is based on the combination of the two major nonlinear effects occurring inside the fiber: self-phase modulation and degenerate four-wave mixing.

© 2013 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 26, 2013
Revised Manuscript: September 6, 2013
Manuscript Accepted: September 6, 2013
Published: October 15, 2013

Citation
Margaux Barbier, Philippe Leproux, Philippe Roy, and Philippe Delaye, "Frequency-dissymmetric parametric sideband generation in a microstructured fiber," J. Opt. Soc. Am. B 30, 2889-2897 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2889


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices (Cambridge University, 2012).
  2. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  3. G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2008).
  4. J. Hansryd, P. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002). [CrossRef]
  5. L. Wang, C. Hong, and S. Friberg, “Generation of correlated photons via four-wave mixing in optical fibers,” J. Opt. B 3, 346–352 (2001). [CrossRef]
  6. O. Alibart, J. Fulconis, G. Wong, S. Murdoch, W. Wadsworth, and J. Rarity, “Photon-pair generation using four-wave mixing in a microstructured fiber: theory versus experiment,” New J. Phys. 8, 67 (2006). [CrossRef]
  7. J. Fan, A. Migdall, J. Chen, E. Goldschmidt, and A. Ling, “Microstructure fiber-based source of photonic entanglement,” IEEE J. Sel. Top. Quantum Electron. 15, 1724–1732 (2009). [CrossRef]
  8. P. Russel, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  9. V. Finazzi, T. Monro, and D. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” J. Opt. Soc. Am. B 20, 1427–1436 (2003). [CrossRef]
  10. S. Coen, A. L. Chau, R. Leonhardt, J. Harvey, J. Knight, W. Wadsworth, and P. Russel, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002). [CrossRef]
  11. P. Roberts, P. Mangan, H. Sabert, F. Couny, T. Birks, J. Knight, and P. Russel, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435–461 (2005). [CrossRef]
  12. F. Benabid, J. Knight, G. Antonopoulos, and P. Russel, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef]
  13. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, “High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber,” Opt. Lett. 32, 337–339 (2007). [CrossRef]
  14. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  15. M.-C. Phan Huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, “Characterization of self-phase modulation in liquid-filled hollow core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 1886–1893 (2010). [CrossRef]
  16. A. Bogris, D. Syvridis, P. Kylemark, and P. Andrekson, “Noise characteristics of dual-pump fiber-optic parametric amplifiers,” J. Lightwave Technol. 23, 2788–2795 (2005). [CrossRef]
  17. A. Weiner, Ultrafast Optics (Wiley, 2009).
  18. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274 (2005). [CrossRef]
  19. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited