OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2898–2905

Bandgap-confined large-mode waveguides for surface plasmon-polaritons

Carsten Reinhardt, Andrey B. Evlyukhin, Wei Cheng, Tobias Birr, Andrey Markov, Bora Ung, Maksim Skorobogatiy, and Boris N. Chichkov  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2898-2905 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (761 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The optical properties of a novel type of open waveguiding structure for surface plasmon-polaritons (SPPs) are experimentally investigated. The waveguide consists of a strip-like region of a gold surface confined by a periodic sequence of dielectric ridges forming a Bragg-type reflector. This bandgap structure resembles the plasmonic analogue of an antiresonant reflecting optical waveguide (ARROW) for SPPs, providing direct access to the guided plasmonic field. The main structural parameters are evaluated by numerical modeling using the finite element and finite-difference time-domain methods. We investigate field distributions of the plasmonic modes in the antiresonant Bragg-reflector waveguides with varied numbers of dielectric ridges and demonstrate a large mode-area single-mode performance at a telecom wavelength of 1550 nm. Furthermore, for an excitation wavelength of 974 nm, it is shown that different low-order modes can be selectively excited using multiple laser beams with variable phase relation. Selective excitation of single longitudinal and transversal modes of the waveguide is realized by coherent two-beam excitation. Possible sensing applications of these large-mode open waveguides are discussed.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: July 9, 2013
Revised Manuscript: September 10, 2013
Manuscript Accepted: September 13, 2013
Published: October 15, 2013

Carsten Reinhardt, Andrey B. Evlyukhin, Wei Cheng, Tobias Birr, Andrey Markov, Bora Ung, Maksim Skorobogatiy, and Boris N. Chichkov, "Bandgap-confined large-mode waveguides for surface plasmon-polaritons," J. Opt. Soc. Am. B 30, 2898-2905 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  2. S. A. Maier, Plasmonics-Fundamentals and Applications (Springer, 2007).
  3. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics (Springer, 2007).
  4. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002). [CrossRef]
  5. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209, 167–172 (2003). [CrossRef]
  6. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30, 1524–1526 (2005). [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  8. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007). [CrossRef]
  9. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, “Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles,” Opt. Express 15, 16667–16680 (2007). [CrossRef]
  10. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martin-Moreno, F. J. Garcia-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Phys. Rev. B 78, 115115 (2008). [CrossRef]
  11. H. Liu, P. Lalanne, X. Yang, and J. P. Hugonin, “Surface plasmon generation by subwavelength isolated objects,” IEEE J. Sel. Top. Quantum Electron. 14, 1522–1529 (2008). [CrossRef]
  12. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009). [CrossRef]
  13. A. B. Evlyukhin, C. Reinhardt, E. Evlyukhina, and B. N. Chichkov, “Asymmetric and symmetric local surface-plasmon-polariton excitation on chains of nanoparticles,” Opt. Lett. 34, 2237–2239 (2009). [CrossRef]
  14. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008). [CrossRef]
  15. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides,” Nano Lett. 8, 2925–2929 (2008). [CrossRef]
  16. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009). [CrossRef]
  17. A. Seidel, C. Reinhardt, T. Holmgaard, W. Cheng, T. Rosenzveig, K. Leosson, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of laser-fabricated DLSPPW at telecom wavelength,” IEEE Photon. J. 2, 652–658 (2010). [CrossRef]
  18. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, R. Kiyan, and B. N. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A 100, 347–352 (2010). [CrossRef]
  19. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31, 1307–1309 (2006). [CrossRef]
  20. R. Kiyan, C. Reinhardt, S. Passinger, A. L. Stepanov, A. Hohenau, J. R. Krenn, and B. N. Chichkov, “Rapid prototyping of optical components for surface plasmon polaritons,” Opt. Express 15, 4205–4215 (2007). [CrossRef]
  21. J. Grandidier, S. Massenot, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. González, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy,” Phys. Rev. B 78, 245419 (2008). [CrossRef]
  22. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy,” Appl. Phys. Lett. 91, 243102 (2007). [CrossRef]
  23. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55–B60 (2009). [CrossRef]
  24. C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A 89, 321–325 (2007). [CrossRef]
  25. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007). [CrossRef]
  26. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  27. A. B. Evlyukhin and S. I. Bozhevolnyi, “Surface plasmon polariton guiding by chains of nanoparticles,” Laser Phys. Lett. 3, 396–400 (2006). [CrossRef]
  28. D. Van Orden, Y. Fainman, and V. Lomakin, “Optical waves on nanoparticle chains coupled with surfaces,” Opt. Lett. 34, 422–424 (2009). [CrossRef]
  29. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86, 3008–3011 (2001). [CrossRef]
  30. T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B 67, 165405 (2003). [CrossRef]
  31. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009). [CrossRef]
  32. H. A. Jamid and M. N. Akram, “Analysis of antiresonant reflecting optical waveguide gratings by use of the method of lines,” Appl. Opt. 42, 3488–3494 (2003). [CrossRef]
  33. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  34. L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type diode lasers,” Proc. SPIE 2382, 155–164 (1995). [CrossRef]
  35. A. Markov, C. Reinhardt, B. Ung, A. B. Evlyukhin, W. Cheng, B. N. Chichkov, and M. Skorobogatiy, “Photonic bandgap plasmonic waveguides,” Opt. Lett. 36, 2468–2470 (2011). [CrossRef]
  36. http://www.rsoftdesign.com/ .
  37. V. Ferreras Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhaensel, K. Frenner, C. Reinhardt, B. N. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” J. Laser Appl. 24, 042004 (2012). [CrossRef]
  38. A. Seidel, J. Gosciniak, M. U. Gonzalez, J. Renger, C. Reinhardt, R. Kiyan, R. Quidant, S. I. Bozhevolnyi, and B. N. Chichkov, “Fiber-coupled surface plasmon polariton excitation in imprinted dielectric-loaded waveguides,” Int. J. Opt. Comput. 2010, 897829 (2010). [CrossRef]
  39. A. Seidel, C. Ohrt, S. Passinger, C. Reinhardt, R. Kiyan, and B. N. Chichkov, “Nanoimprinting of dielectric loaded surface plasmon-polariton waveguides from masters fabricated by 2-photon polymerization technique,” J. Opt. Soc. Am. B 26, 810–812 (2009). [CrossRef]
  40. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. L. Stepanov, R. Kiyan, and B. N. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16, 14369–14379 (2008). [CrossRef]
  41. A. Zukauskas, M. Malinauskas, C. Reinhardt, B. N. Chichkov, and R. Gadonas, “Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization,” Appl. Opt. 51, 4995–5003 (2012). [CrossRef]
  42. C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013). [CrossRef]
  43. M. Mrksich, G. B. Sigal, and G. M. Whitesides, “Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold,” Langmuir 11, 4383–4385 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited