OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2915–2920

Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure

Zhiping Wang and Benli Yu  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2915-2920 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the optical bistability (OB) and multistability in a coupled semiconductor double-quantum-dot nanostructure inside an optical ring cavity. It is found that the transition from OB to multistability or vice versa can be easily controlled via properly adjusting the corresponding parameters of the system. Our scheme opens the possibility to optimize and control all optical switching and all optical storage devices in a coupled semiconductor double-quantum-dot nanostructure.

© 2013 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

Original Manuscript: July 22, 2013
Revised Manuscript: September 2, 2013
Manuscript Accepted: September 18, 2013
Published: October 17, 2013

Zhiping Wang and Benli Yu, "Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure," J. Opt. Soc. Am. B 30, 2915-2920 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995). [CrossRef]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  3. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef]
  4. Y. Wu and L. Deng, “Ultra-slow optical solitons in a cold fourstate medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  5. Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  6. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  7. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009). [CrossRef]
  9. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003). [CrossRef]
  10. A. Joshi, “Phase-dependent electromagnetically induced transparency and its dispersion properties in a four-level quantum well system,” Phys. Rev. B 79, 115315 (2009). [CrossRef]
  11. W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008). [CrossRef]
  12. H. Sun, S. Gong, Y. Niu, S. Jin, R. Li, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006). [CrossRef]
  13. S. M. Sadeghi, H. M. van Driel, and J. M. Fraser, “Coherent control and enhancement of refractive index in an asymmetric double quantum well,” Phys. Rev. B 62, 15386 (2000). [CrossRef]
  14. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000). [CrossRef]
  15. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005). [CrossRef]
  16. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef]
  17. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Coherent manipulation of a strongly driven semiconductor quantum well,” Phys. Rev. B 73, 125344 (2006). [CrossRef]
  18. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175–178 (2006). [CrossRef]
  19. C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006). [CrossRef]
  20. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006). [CrossRef]
  21. H. S. Borges, L. Sanz, J. M. Villas-Boas, O. O. Diniz Neto, and A. M. Alcalde, “Tunneling induced transparency and slow light in quantum dot molecules,” Phys. Rev. B 85, 115425 (2012). [CrossRef]
  22. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976). [CrossRef]
  23. S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996). [CrossRef]
  24. W. Harshawerdhan and G. S. Agarwal, “Controlling optical bistability using electromagnetic-field-induced transparency and quantum interferences,” Phys. Rev. A 53, 1812–1817 (1996). [CrossRef]
  25. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001).
  26. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003). [CrossRef]
  27. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003). [CrossRef]
  28. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003). [CrossRef]
  29. J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006). [CrossRef]
  30. J. Sheng, U. Khadka, and M. Xiao, “Realization of all-optical multistate switching in an atomic coherent medium,” Phys. Rev. Lett. 109, 223906 (2012). [CrossRef]
  31. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004). [CrossRef]
  32. J. H. Li, “Controllable optical bistability in a four-subband semiconductor quantum well system,” Phys. Rev. B 75, 155329 (2007). [CrossRef]
  33. M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir,” Opt. Commun. 281, 3301–3313 (2008). [CrossRef]
  34. J. Li, R. Yu, J. Liu, P. Huang, and X. Yang, “Voltage-controlled optical bistability of a tunable three-level system in a quantum dot molecule,” Physica E 41, 70–73 (2008). [CrossRef]
  35. Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013). [CrossRef]
  36. C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 91, 1884–1897 (2003), and references therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited