OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2921–2927

Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers

T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. St.J. Russell  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2921-2927 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002921


View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The propagation of light guided in optical fibers is affected in different ways by bending or twisting. Here we treat the polarization properties of twisted six-fold symmetric photonic crystal fibers. Using a coordinate frame that follows the twisting structure, we show that the governing equation for the fiber modes resembles the Pauli equation for electrons in weak magnetic fields. This implies index splitting between left and right circularly polarized modes, which are degenerate in the untwisted fiber. We develop a theoretical model, based on perturbation theory and symmetry properties, to predict the observable circular birefringence (i.e., optical activity) associated with this splitting. Our overall conclusion is that optical activity requires the rotational symmetry to be broken so as to allow coupling between different total angular momentum states.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(220.0220) Optical design and fabrication : Optical design and fabrication
(260.0260) Physical optics : Physical optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 17, 2013
Revised Manuscript: September 25, 2013
Manuscript Accepted: September 26, 2013
Published: October 22, 2013

Citation
T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, X. M. Xi, and P. St.J. Russell, "Topological Zeeman effect and circular birefringence in twisted photonic crystal fibers," J. Opt. Soc. Am. B 30, 2921-2927 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2921


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. K. Wong, M. S. Kang, H. W. Lee, F. Biancalana, C. Conti, T. Weiss, and P. S. J. Russell, “Topological excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber,” Science 337, 446 (2012). [CrossRef]
  2. W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and K. Oh, “Spectral characterization of helicoidal long-period fiber gratings in photonic crystal fibers,” Opt. Commun. 282, 3456–3459 (2009). [CrossRef]
  3. X. M. Xi, T. Weiss, G. K. L. Wong, F. Biancalana, S. M. Barnett, M. J. Padgett, and P. S. J. Russell, “Optical activity in twisted solid-core photonic crystal fibers,” Phys. Rev. Lett. 110, 143903 (2013). [CrossRef]
  4. X. Ma, C. H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally coupled core fibers,” Opt. Express 19, 26515–26528 (2011). [CrossRef]
  5. C. N. Alexeyev and M. A. Yavorsky, “Generation and conversion of optical vortices in long-period helical core optical fibers,” Phys. Rev. A 78, 043828 (2008). [CrossRef]
  6. C. N. Alexeyev, T. A. Fadeyeva, B. P. Lapin, and M. A. Yavorsky, “Generation of optical vortices in layered helical waveguides,” Phys. Rev. A 83, 063820 (2011). [CrossRef]
  7. M. Ornigotti, G. Della Valle, D. Gatti, and S. Longhi, “Topological suppression of optical tunneling in a twisted fiber,” Phys. Rev. A 76, 023833 (2007). [CrossRef]
  8. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979). [CrossRef]
  9. A. J. Barlow, J. J. Ramskovhansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20, 2962–2968 (1981). [CrossRef]
  10. A. W. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall1983).
  11. A. W. Snyder and X. H. Zheng, “Optical fibers of arbitrary cross-sections,” J. Opt. Soc. Am. A 3, 600–609 (1986). [CrossRef]
  12. M. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett. 26, 488–490 (2001). [CrossRef]
  13. K. Z. Aghaie, V. Dangui, M. J. F. Digonnet, S. Fan, and G. S. Kino, “Classification of the core modes of hollow-core photonic-bandgap fibers,” IEEE J. Quantum Electron. 45, 1192–1200 (2009). [CrossRef]
  14. C. Cohen-Tannoudji, Quantum Mechanics (Hermann, 1991).
  15. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  16. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003). [CrossRef]
  17. A. Nicolet, F. Zolla, and S. Guenneau, “Geometrical transformations and equivalent materials in computational electromagnetism,” Compel 27, 806–819 (2008). [CrossRef]
  18. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher-order modes of twisted strongly elliptical optical fibers,” J. Opt. A 6, 824–832 (2004). [CrossRef]
  19. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B 4, S7–S16 (2002). [CrossRef]
  20. R. Sammut and A. W. Synder, “Leaky modes on a dielectric waveguide: orthogonality and excitation,” Appl. Opt. 15, 1040–1044 (1976). [CrossRef]
  21. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited