OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2940–2951

Robustness of electric field vector sensing of electromagnetic waves by analyzing crystal angle dependence of the electro-optic effect

Naoya Yasumatsu and Shinichi Watanabe  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2940-2951 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically and experimentally investigate the accuracy with which the magnitude and direction of the electric field (E-field) vector of electromagnetic waves can be determined using the crystal angle dependence of the electro-optic (EO) effect. The mathematical treatment in this paper is a large extension of our previous work to determine the E-field direction of terahertz electromagnetic waves by the spinning EO sensor method [Rev. Sci. Instrum. 83, 023104 (2012)]. Here we include misadjustments of the wave plate and polarizer in the experimental setup as well as the effect of the residual birefringence of the EO crystal due to uniform and local strains. The main results are as follows: (1) When there is no residual birefringence in the EO crystal, misadjustments of the wave plate and polarizer do not affect the experimentally determined direction of the E-field vector. This is true even when the term proportional to the square of the E-field magnitude of the EO signal becomes important. (2) The error due to residual birefringence can be effectively eliminated by a signal subtraction algorithm and it is roughly the product of the misadjustment angle of the wave plate and the degree of residual birefringence, which is very small. (3) The error does not depend on the magnitude of the E-field; thus, we can apply the technique when the E-field is weak and the polarization rotation of the probe pulse caused by the EO effect is much smaller than that induced by residual birefringence. These results give a mathematical basis for the accuracy and reliability of the spinning EO sensor method, which is robust, and will be useful for ultrabroadband E-field vector sensing at far-infrared to mid-infrared frequencies.

© 2013 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(040.2235) Detectors : Far infrared or terahertz

ToC Category:

Original Manuscript: July 17, 2013
Manuscript Accepted: September 7, 2013
Published: October 24, 2013

Naoya Yasumatsu and Shinichi Watanabe, "Robustness of electric field vector sensing of electromagnetic waves by analyzing crystal angle dependence of the electro-optic effect," J. Opt. Soc. Am. B 30, 2940-2951 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Mittleman, J. Cunningham, M. C. Nuss, M. Geva, “Noncontact semiconductor wafer characterization with the terahertz Hall effect,” Appl. Phys. Lett. 71, 16–18 (1997). [CrossRef]
  2. T. Nagashima, M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett. 79, 3917–3919 (2001). [CrossRef]
  3. E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 33, 418–430 (2012). [CrossRef]
  4. C. M. Morris, R. V. Aguilar, A. V. Stier, N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express 20, 12303–12317 (2012). [CrossRef]
  5. N. C. J. van der Valk, W. A. M. van der Marel, P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30, 2802–2804 (2005). [CrossRef]
  6. R. Zhang, Y. Cui, W. F. Sun, Y. Zhang, “Polarization information for terahertz imaging,” Appl. Opt. 47, 6422–6427 (2008). [CrossRef]
  7. L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, Y. J. Zhao, “Terahertz polarization imaging with birefringent materials,” Opt. Commun. 283, 4993–4995 (2010). [CrossRef]
  8. L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, Y. J. Zhao, “THz wave polarization-controlled spectroscopic imaging for anisotropic materials,” Opt. Commun. 284, 4356–4359 (2011). [CrossRef]
  9. S. Katletz, M. Pfleger, H. Puhringer, M. Mikulics, N. Vieweg, O. Peters, B. Scherger, M. Scheller, M. Koch, K. Wiesauer, “Polarization sensitive terahertz imaging: detection of birefringence and optical axis,” Opt. Express 20, 23025–23035 (2012). [CrossRef]
  10. N. Yasumatsu, S. Watanabe, “T-ray topography by time-domain polarimetry,” Opt. Lett. 37, 2706–2708 (2012). [CrossRef]
  11. E. Castro-Camus, J. Lloyd-Hughes, M. B. Johnston, M. D. Fraser, H. H. Tan, C. Jagadish, “Polarization-sensitive terahertz detection by multicontact photoconductive receivers,” Appl. Phys. Lett. 86, 254102 (2005). [CrossRef]
  12. H. Makabe, Y. Hirota, M. Tani, M. Hangyo, “Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna,” Opt. Express 15, 11650–11657 (2007). [CrossRef]
  13. A. Hussain, S. R. Andrews, “Ultrabroadband polarization analysis of terahertz pulses,” Opt. Express 16, 7251–7257 (2008). [CrossRef]
  14. G. S. Jenkins, D. C. Schmadel, H. D. Drew, “Simultaneous measurement of circular dichroism and Faraday rotation at terahertz frequencies utilizing electric field sensitive detection via polarization modulation,” Rev. Sci. Instrum. 81, 083903 (2010). [CrossRef]
  15. N. Yasumatsu, S. Watanabe, “Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor,” Rev. Sci. Instrum. 83, 023104 (2012). [CrossRef]
  16. M. Neshat, N. P. Armitage, “Improved measurement of polarization state in terahertz polarization spectroscopy,” Opt. Lett. 37, 1811–1813 (2012). [CrossRef]
  17. C. Jordens, M. Scheller, S. Wietzke, D. Romeike, C. Jansen, T. Zentgraf, K. Wiesauer, V. Reisecker, M. Koch, “Terahertz spectroscopy to study the orientation of glass fibres in reinforced plastics,” Compos. Sci. Technol. 70, 472–477 (2010). [CrossRef]
  18. Y. Ikebe, T. Morimoto, R. Masutomi, T. Okamoto, H. Aoki, R. Shimano, “Optical Hall effect in the integer quantum Hall regime,” Phys. Rev. Lett. 104, 256802 (2010). [CrossRef]
  19. R. Shimano, Y. Ikebe, K. S. Takahashi, M. Kawasaki, N. Nagaosa, Y. Tokura, “Terahertz Faraday rotation induced by an anomalous Hall effect in the itinerant ferromagnet SrRuO3,” Europhys. Lett. 95, 17002–17006 (2011). [CrossRef]
  20. R. V. Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K. George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh, N. P. Armitage, “Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3,” Phys. Rev. Lett. 108, 087403 (2012). [CrossRef]
  21. J. Xu, G. J. Ramian, J. F. Galan, P. G. Savvidis, A. M. Scopatz, R. R. Birge, J. Allen, K. W. Plaxco, “Terahertz circular dichroism spectroscopy: a potential approach to the in situ detection of life’s metabolic and genetic machinery,” Astrobiology 3, 489–504 (2003). [CrossRef]
  22. R. Imai, N. Kanda, T. Higuchi, Z. Zheng, K. Konishi, M. Kuwata-Gonokami, “Terahertz vector beam generation using segmented nonlinear optical crystals with threefold rotational symmetry,” Opt. Express 20, 21896–21904 (2012). [CrossRef]
  23. Q. Wu, X. C. Zhang, “Free-space electro-optics sampling of mid-infrared pulses,” Appl. Phys. Lett. 71, 1285–1286 (1997). [CrossRef]
  24. T. Kampfrath, J. Notzold, M. Wolf, “Sampling of broadband terahertz pulses with thick electro-optic crystals,” Appl. Phys. Lett. 90, 231113 (2007). [CrossRef]
  25. A. Sell, A. Leitenstorfer, R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767–2769 (2008). [CrossRef]
  26. D. Tsankov, T. Eggimann, H. Wieser, “Alternative design for improved FT-IR/VCD capabilities,” Appl. Spectrosc. 49, 132–138 (1995). [CrossRef]
  27. N. C. J. van der Valk, T. Wenckebach, P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004). [CrossRef]
  28. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001). [CrossRef]
  29. Z. Jiang, F. G. Sun, Q. Chen, X. C. Zhang, “Electro-optic sampling near zero optical transmission point,” Appl. Phys. Lett. 74, 1191–1193 (1999). [CrossRef]
  30. Z. P. Jiang, X. G. Xu, X. C. Zhang, “Improvement of terahertz imaging with a dynamic subtraction technique,” Appl. Opt. 39, 2982–2987 (2000). [CrossRef]
  31. M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003). [CrossRef]
  32. M. Brunken, H. Genz, P. Göttlicher, C. Hessler, M. Hüning, H. Loos, A. Richter, H. Schlarb, “Electro-optic sampling at the TESLA test accelerator: experimental setup and first results,” , pp. 1–24 (2003).
  33. S. Watanabe, N. Yasumatsu, K. Oguchi, M. Takeda, T. Suzuki, T. Tachizaki, “A real-time terahertz time-domain polarization analyzer with 80-MHz repetition-rate femtosecond laser pulses,” Sensors 13, 3299–3312 (2013). [CrossRef]
  34. R. W. Lee, “Linear electro-optic (pockels) effect in hexamethylenetetramine—influence of crystal strain,” J. Opt. Soc. Am. 59, 1574–1580 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited