OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2960–2965

Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system

Antonio Agnesi, Luca Carrá, Federico Pirzio, Riccardo Piccoli, and Giancarlo Reali  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 2960-2965 (2013)
http://dx.doi.org/10.1364/JOSAB.30.002960


View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on an investigation of a passively mode-locked picosecond ytterbium-doped fiber laser with a repetition rate close to 1 MHz. The mode-locking operation was induced by a butt-coupled semiconductor saturable absorber mirror (SESAM) and stabilized in the normal dispersion regime by means of spectral filtering of a narrow bandwidth (0.1 nm) fiber Bragg grating (FBG). A pulse duration of about 50 ps with maximum output power of 20 mW at 1064 nm were achieved after amplification in the double-pass fiber preamplifier. This compact and reliable all-fiber laser operating at 1064 nm is intended to seed bulk amplifiers in a hybrid fiber/solid-state configuration. Employing a two-stage Nd:YVO4 amplifier, we obtained 10 W average output power, which preserved both the quasi-diffraction limited beam quality and spectral purity of the seeder. Second harmonic generation (SHG) with 50% conversion efficiency was demonstrated in type-II potassium titanyl phosphate (KTP) and type-I angle phase matched lithium triborate (LBO) crystal. Furthermore, a space independent numerical model was developed in order to study the dependence of intracavity pulse energy on the main design parameters of the master oscillator (cavity length, FBG bandwidth, SESAM modulation depth) within the stability range (single pulse per round trip in CW mode-locking operation) of the fiber laser master oscillator.

© 2013 Optical Society of America

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 15, 2013
Manuscript Accepted: September 23, 2013
Published: October 24, 2013

Citation
Antonio Agnesi, Luca Carrá, Federico Pirzio, Riccardo Piccoli, and Giancarlo Reali, "Low repetition rate, hybrid fiber/solid-state, 1064  nm picosecond master oscillator power amplifier laser system," J. Opt. Soc. Am. B 30, 2960-2965 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2960


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspective,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  2. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  3. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65, 259–275 (1997). [CrossRef]
  4. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009). [CrossRef]
  5. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997). [CrossRef]
  6. J. Limpert, F. Röser, T. Schreiber, and A. Tünnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006). [CrossRef]
  7. O. Katz and Y. Sintov, “Strictly all-fiber picosecond ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun. 281, 2874–2878 (2008). [CrossRef]
  8. F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200  MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005). [CrossRef]
  9. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef]
  10. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008). [CrossRef]
  11. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef]
  12. A. Chong, W. Renninger, and F. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008). [CrossRef]
  13. R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89  fs in normal dispersion fiber,” Appl. Opt. 47, 1182–1186 (2008). [CrossRef]
  14. J. Lægsgaard, “Control of fibre laser mode-locking by narrowband Bragg gratings,” J. Phys. B 41, 095401 (2008). [CrossRef]
  15. M. Baumgartl, J. Abreu-Afonso, A. Díez, M. Rothhardt, J. Limpert, and A. Tünnermann, “Environmentally stable picosecond Yb fiber laser with low repetition rate,” Appl. Phys. B 111, 39–43 (2013). [CrossRef]
  16. G. Agrawal, Nonlinear Fiber Optics (Academic, 2006).
  17. M. Baumgartl, B. Ortac, T. Schreiber, J. Limpert, and A. Tünnermann, “Ultrashort pulse formation and evolution in mode-locked fiber lasers,” Appl. Phys. B 104, 523–536 (2011). [CrossRef]
  18. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion mode-locked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007). [CrossRef]
  19. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode-locking,” J. Opt. Soc. Am. B 16, 46–56 (1999). [CrossRef]
  20. A. Agnesi, L. Carrá, R. Piccoli, F. Pirzio, and G. Reali, “Nd:YVO4 amplifier for ultrafast low-power lasers,” Opt. Lett. 37, 3612–3614 (2012). [CrossRef]
  21. A. Agnesi, L. Carrá, C. Di Marco, R. Piccoli, and G. Reali, “Fourier-limited 19  ps Yb-fiber seeder stabilized by spectral filtering and tunable between 1015 and 1085  nm,” IEEE Photon. Technol. Lett. 24, 927–929 (2012). [CrossRef]
  22. D. Turchinovich, X. Liu, and J. Lægsgaarsd, “Monolithic all-PM femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004–14014 (2008). [CrossRef]
  23. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996). [CrossRef]
  24. R. Grange, M. Haiml, R. Paschotta, G. J. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005). [CrossRef]
  25. A. Dergachev, M. A. Yakshin, P. F. Moulton, C. Janke, M. Benetti, T. Ruchti, and M. Shinn, “High-average-power picosecond drive source for photocathode injectors,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies (Optical Society of America, 2005), paper CMJ4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited