## Ultrafast optical switching using parity–time symmetric Bragg gratings |

JOSA B, Vol. 30, Issue 11, pp. 2984-2991 (2013)

http://dx.doi.org/10.1364/JOSAB.30.002984

Enhanced HTML Acrobat PDF (1194 KB)

### Abstract

This paper reports on time-domain modeling of an optical switch based on the parity–time (PT) symmetric Bragg grating. The switching response is triggered by suddenly switching on the gain in the Bragg grating to create a PT-symmetric Bragg grating. Transient and dynamic behaviors of the PT Bragg gratings are analyzed using the time-domain numerical transmission line modeling method including a simple gain saturation model. The on/off ratio and the switching time of the PT Bragg grating optical switch are analyzed in terms of the level of gain introduced in the system and the operating frequency. The paper also discusses the effect the gain saturation has on the operation of the PT-symmetric Bragg gratings.

© 2013 Optical Society of America

**OCIS Codes**

(190.0190) Nonlinear optics : Nonlinear optics

(230.0230) Optical devices : Optical devices

**ToC Category:**

Diffraction and Gratings

**History**

Original Manuscript: July 10, 2013

Revised Manuscript: September 5, 2013

Manuscript Accepted: September 26, 2013

Published: October 25, 2013

**Citation**

Sendy Phang, Ana Vukovic, Hadi Susanto, Trevor M. Benson, and Phillip Sewell, "Ultrafast optical switching using parity–time symmetric Bragg gratings," J. Opt. Soc. Am. B **30**, 2984-2991 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-2984

Sort: Year | Journal | Reset

### References

- Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106, 213901 (2011). [CrossRef]
- A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, “Parity-time synthetic photonic lattices,” Nature 488, 167–171 (2012). [CrossRef]
- K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
- Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106, 093902 (2011). [CrossRef]
- J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos, “PT-symmetric electronics,” J. Phys. A 45, 1–15 (2012). [CrossRef]
- T. Kottos, “Broken symmetry makes light works,” Nat. Phys. 6, 166–167 (2010). [CrossRef]
- H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, “Unidirectional nonlinear PT-symmetric optical structures,” Phys. Rev. A 82, 043803 (2010). [CrossRef]
- A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, “Nonlinear suppression of time reversals in PT-symmetric optical couplers,” Phys. Rev. A 82, 043818 (2010). [CrossRef]
- F. Nazari, M. Nazari, and M. K. Moravvej-Farshi, “A 2×2 spatial optical switch based on PT-symmetry,” Opt. Lett. 36, 4368–4370 (2011). [CrossRef]
- C. M. Bender, S. Boettcher, and P. N. Meisinger, “PT-symmetric quantum mechanics,” J. Math. Phys. 40, 2201–2229 (1999). [CrossRef]
- S. Nixon, L. Ge, and J. Yang, “Stability analysis for soliton in PT-symmetric optical lattices,” Phys. Rev. A 85, 023822 (2012). [CrossRef]
- M. Kulishov, J. M. Laniel, N. Belanger, J. Azana, and D. V. Plant, “Nonreciprocal waveguide Bragg gratings,” Opt. Express 13, 3068–3078 (2005).
- M. Greenberg and M. Orenstein, “Unidirectional complex grating assisted couplers,” Opt. Express 12, 4013–4018 (2004). [CrossRef]
- M. Greenberg and M. Orenstein, “Optical unidirectional devices by complex spatial single sideband perturbation,” IEEE J. Quantum Electron. 41, 1013–1023 (2005). [CrossRef]
- R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Z. H. Musslimani, “Theory of coupled optical PT-symmetric structures,” Opt. Lett. 32, 2632–2634 (2007). [CrossRef]
- L. Chen, R. Li, N. Yang, and L. Li, “Optical modes in PT-symmetric double channel waveguides,” in Proceedings of the Romanian Academy, Series A (2012), Vol. X, pp. 1–10.
- C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmertry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]
- A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase shifted fibre Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000). [CrossRef]
- Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008). [CrossRef]
- A. Majumdar, M. Bajcsy, D. Englund, and J. Vuckovic, “All optical switching with a single quantum dot strongly coupled to a photonic crystal cavity,” IEEE J. Sel. Top. Quantum Electron. 18, 1812–1817 (2012). [CrossRef]
- A. Mostafazadeh, “Invisibility and PT-symmetry,” arXiv:1206.0116 (2012).
- A. Mostafazadeh, “Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies,” Phys. Rev. Lett. 102, 220402 (2009). [CrossRef]
- J. Čtyroký, V. Kuzmiak, and S. Eyderman, “Waveguide structures with antisymmetric gain/loss profile,” Opt. Express 18, 21585–21593 (2010). [CrossRef]
- A. E. Siegman, Lasers (University Science Books, 1986).
- W. J. R. Hoefer, “The transmission-line matrix method—theory and applications,” IEEE Trans. Microw. Theory Tech. 33, 882–893 (1985). [CrossRef]
- C. Christopoulos, The Transmission Line Modeling Method: TLM (IEEE, 1995).
- M. Krumpholz, C. Huber, and P. Russer, “A field theoretical comparison of FDTD and TLM,” IEEE Trans. Microw. Theory Tech. 43, 1935–1950 (1995). [CrossRef]
- M. N. O. Sadiku, “A comparison of time-domain finite difference (FDTD) and transmission-line modeling (TLM) methods,” in Proceedings of the IEEE Southeastcon 2000 (IEEE, 2000), pp. 19–22.
- P. B. Johns, “On the relationship between TLM and finite-difference methods for Maxwell’s equation,” IEEE Trans. Microw. Theory Tech. 35, 60–61 (1987).
- R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1991).
- D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baet, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not an optical isolator,” Nat. Photonics 7, 579–582 (2013). [CrossRef]
- V. Janyani, A. Vukovic, J. D. Paul, P. Sewell, and T. M. Benson, “The development of TLM models for nonlinear optics,” IEEE Microw. Rev. 10, 35–42 (2004).
- J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material modes in TLM-part 3: material with nonlinear properties,” IEEE Trans. Antennas Propag. 50, 997–1004 (2002). [CrossRef]
- J. Paul, C. Christopoulos, and D. W. P. Thomas, “Generalized material model in TLM-part I: material with frequency-dependent properties,” IEEE Trans. Antennas Propag. 47, 1528–1534 (1999).
- K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride a versatile material for integrated optics applications,” J. Electrochem. Soc. 149, F85–F91 (2002). [CrossRef]
- S. Phang, A. Vukovic, H. Susanto, T. M. Benson, and P. Sewell, “Time domain modeling of all-optical switch based on PT-symmetric Bragg grating,” in Proceedings of the 29th Annual Review of Progress in Applied Computational Electromagnetics (ACES), Monterey, California, March20–28, 2013 (ACES, 2013), pp. 693–698.
- C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fibre laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.