OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 2999–3010

Surfaces, films, and multilayers for compact nonlinear plasmonics

Xiaojun Liu, Alec Rose, Ekaterina Poutrina, Cristian Ciracì, Stéphane Larouche, and David R. Smith  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 2999-3010 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (894 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a step-by-step analysis of four-wave mixing (FWM) in one-dimensional stacks of metallo-dielectric structures, pointing out various channels of plasmonic and Fabry–Perot enhancement. We start from the derivation of oblique incidence FWM at a single interface and then extend these expressions into a transfer-matrix-based formalism to quantitatively study films and multilayer geometries. Throughout our analysis, we consider typical examples, such as a single silver interface, a thin silver film, and Fabry–Perot multilayers. In this way, we offer an intuitive view of the surprisingly rich dynamics supported by even the simplest of nonlinear plasmonic systems.

© 2013 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Optics at Surfaces

Original Manuscript: July 2, 2013
Manuscript Accepted: August 13, 2013
Published: October 28, 2013

Xiaojun Liu, Alec Rose, Ekaterina Poutrina, Cristian Ciracì, Stéphane Larouche, and David R. Smith, "Surfaces, films, and multilayers for compact nonlinear plasmonics," J. Opt. Soc. Am. B 30, 2999-3010 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012). [CrossRef]
  3. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968). [CrossRef]
  4. J. Rudnick and E. Stern, “Second-harmonic radiation from metal surfaces,” Phys. Rev. B 4, 4274–4290 (1971). [CrossRef]
  5. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21, 4389–4402 (1980). [CrossRef]
  6. G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30, 3002–3015 (1984). [CrossRef]
  7. H. B. Jiang, L. Li, W. C. Wang, J. B. Zheng, Z. M. Zhang, and Z. Chen, “Reflected second-harmonic generation at a silver surface,” Phys. Rev. B 44, 1220–1224 (1991). [CrossRef]
  8. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  9. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006). [CrossRef]
  10. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  11. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009). [CrossRef]
  12. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2010). [CrossRef]
  13. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27, 408–416 (2010). [CrossRef]
  14. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Second-harmonic generation in metallic nanoparticles: clarification of the role of the surface,” Phys. Rev. B 86, 115451 (2012). [CrossRef]
  15. R. S. Bennink, Y. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999). [CrossRef]
  16. N. N. Lepeahkin, A. Schweinaberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004). [CrossRef]
  17. N. A. Papadogiannics, P. A. Loukakos, and S. D. Moustaizis, “Observation of the inversion of second and third harmonic generation efficiencies on a gold surface in the femtosecond regime,” Opt. Commun. 166, 113–139 (1999). [CrossRef]
  18. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 119291 (1997).
  19. F. Hache, D. Ricard, and C. Flytzanis, “Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects,” Opt. Lett. 12, 1647–1655 (1986).
  20. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett. 5, 799–802 (2005). [CrossRef]
  21. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef]
  22. F. Hache, D. Richard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloide: the case of gold,” Appl. Phys. A 47, 347–357 (1988). [CrossRef]
  23. N. N. Lepeshkin, W. Kim, V. P. Safonov, J. G. Zhu, R. L. Armstrong, C. W. White, R. A. Zuhr, and V. M. Shalaev, “Optical nonlinearities of metal-dielectric composites,” J. Nonlinear Opt. Phys. Mater. 8, 191–210 (1999). [CrossRef]
  24. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009). [CrossRef]
  25. J. Renger, R. Quidant, and L. Novotny, “Enhanced nonlinear response from metal surfaces,” Opt. Express 19, 1777–1785 (2011). [CrossRef]
  26. J. Renger, R. Quidant, N. van Hulst, and L. Novotny, “Surface-enhanced nonlinear four wave mixing,” Phys. Rev. Lett. 104, 046803 (2010). [CrossRef]
  27. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater. 11, 34–38 (2011). [CrossRef]
  28. P. Genevet, J. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010). [CrossRef]
  29. E. Poutrina, C. Ciracì, D. J. Gauthier, and D. R. Smith, “Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film,” Opt. Express 20, 11005 (2012). [CrossRef]
  30. A. D. Boardman, Electromagnetic Surface Modes (Wiley, New York, 1982).
  31. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, allium, indium, zinc, and cadmium,” J. Phys. Chem. 91, 634–643 (1987). [CrossRef]
  32. J. D. McMullen, “Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates,” J. Appl. Phys. 46, 3076–3081 (1975). [CrossRef]
  33. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  34. X. H. Wang and B. Y. Gu, “Nonlinear frequency conversion in 2D χ(2) photonic crystals and novel nonlinear double-circle construction,” Eur. Phys. J. B 24, 323–326 (2001). [CrossRef]
  35. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989). [CrossRef]
  36. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: extension of optical transfer matrix approach to include anisotropic materials,” J. Opt. Soc. Am. B 8, 367–373 (1991). [CrossRef]
  37. S. Enoch and H. Akhouayri, “Second-harmonic generation in multilayered devices: theoretical tools,” J. Opt. Soc. Am. B 15, 1030–1041 (1998). [CrossRef]
  38. S. Lim, “Second harmonic generation of magnetic and dielectric multilayers,” J. Phys. 18, 4329–4343 (2006).
  39. J. Yuan, “Computing for second harmonic generation in one-dimensional nonlinear photonic crystals,” Opt. Commun. 282, 2628–2633 (2009). [CrossRef]
  40. J. Li, Z. Li, and D. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007). [CrossRef]
  41. P. Szczepański, T. Osuch, and Z. Jaroszewicz, “Modeling of amplification and light generation in one-dimensional photonic crystal using a multiwavelength transfer matrix approach,” Appl. Opt. 48, 5401–5406 (2009). [CrossRef]
  42. A. Rose, S. Larouche, D. Huang, E. Poutrina, and D. R. Smith, “Nonlinear parameter retrieval from three- and four-wave mixing in metamaterials,” Phys. Rev. E 82, 036608 (2010). [CrossRef]
  43. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  44. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic bandgap structures,” J. Appl. Phys. 83, 2377–2383 (1998). [CrossRef]
  45. B. Temelkuran and E. Ozbay, “Experimental demonstration of photonic crystal based waveguides,” Appl. Phys. Lett. 74, 486–488 (1999). [CrossRef]
  46. S. Larouche and D. R. Smith, “A retrieval method for nonlinear metamaterials,” Opt. Commun. 283, 1621–1627 (2010). [CrossRef]
  47. S. Larouche, A. Rose, E. Poutrina, D. Huang, and D. R. Smith, “Experimental determination of the quadratic nonlinear magnetic susceptibility of a varactor-loaded split ring resonator metamaterials,” Appl. Phys. Lett. 97, 011109 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited