OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 3041–3047

Role of upconversion in optical refrigeration: A theoretical study of laser cooling with Ho3+ doped fluoride crystals

Guang-Zong Dong and Xin-Lu Zhang  »View Author Affiliations


JOSA B, Vol. 30, Issue 11, pp. 3041-3047 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003041


View Full Text Article

Enhanced HTML    Acrobat PDF (487 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a generalized model for optical refrigeration with Ho3+ doped fluoride crystals in which the dopant concentration dependent upconversion is considered. Based on the spectrum properties of candidate rare-earth ions (Ho3+, Tm3+, and Er3+) for optical refrigeration, a common criterion for upconversion assisted cooling is derived. The cooling performances of Ho3+:YLiF4 crystals are simulated to reveal the practical dopant concentration range for cooling. It is found that the optimal dopant concentration is determined by a balancing consideration of heat loads induced by background absorption and fluorescence quenching. The appropriate pump wavelengths for optical refrigeration with Ho3+:YLiF4 crystals are also indicated.

© 2013 Optical Society of America

OCIS Codes
(140.3320) Lasers and laser optics : Laser cooling
(140.6810) Lasers and laser optics : Thermal effects
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 16, 2013
Revised Manuscript: September 18, 2013
Manuscript Accepted: September 24, 2013
Published: October 28, 2013

Citation
Guang-Zong Dong and Xin-Lu Zhang, "Role of upconversion in optical refrigeration: A theoretical study of laser cooling with Ho3+ doped fluoride crystals," J. Opt. Soc. Am. B 30, 3041-3047 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-11-3041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. V. Seletskiy, M. P. Hehlen, R. I. Epstein, and M. Sheik-Bahae, “Cryogenic optical refrigeration,” Adv. Opt. Photon. 4, 78–107 (2012). [CrossRef]
  2. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturestrahlung,” Z. Phys. 57, 739–746 (1929). [CrossRef]
  3. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. 10, 503–506 (1946).
  4. A. Kastler, “Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique,” J. Phys. Radium 11, 255–265 (1950). [CrossRef]
  5. T. Kushida and J. E. Geusic, “Optical refrigeration in Nd-doped yttrium aluminum garnet,” Phys. Rev. Lett. 21, 1172–1175 (1968). [CrossRef]
  6. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995). [CrossRef]
  7. A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002). [CrossRef]
  8. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000). [CrossRef]
  9. W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. I. Epstein, “Anti-Stokes luminescence cooling of Tm3+doped BaY2F8,” Opt. Express 16, 1704–1710 (2008). [CrossRef]
  10. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, “Anti-Stokes laser cooling in bulk erbium-doped materials,” Phys. Rev. Lett. 97, 033001 (2006). [CrossRef]
  11. M. P. Hehlen, “Novel materials for laser refrigeration,” Proc. SPIE 7228, 72280E (2009). [CrossRef]
  12. R. I. Epstein and M. Sheik-Bahae, Optical Refrigeration (Wiley, 2009).
  13. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4, 161–164 (2010). [CrossRef]
  14. D. V. Seletskiy, S. D. Melgaard, R. I. Epstein, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Local laser cooling of Yb:YLF to 110  K,” Opt. Express 19, 18229–18236 (2011). [CrossRef]
  15. N. J. Condon, S. R. Bowman, S. O’Connor, R. S. Quimby, and C. E. Mungan, “Optical cooling in Er3+:KPb2Cl5,” Opt. Express 17, 5466–5472 (2009). [CrossRef]
  16. S. R. Bowman, S. O’Connor, N. J. Condon, E. J. Friebele, W. Kim, B. Shaw, and R. S. Quimby, “Non-radiative decay of holmium-doped laser materials,” Proc. SPIE 8638, 863803 (2013). [CrossRef]
  17. A. J. Garcia-Adeva, R. Balda, and J. Fernandez, “Upconversion cooling of Er-doped low-phonon fluorescent solids,” Phys. Rev. B 79, 033110 (2009). [CrossRef]
  18. N. P. Barnes and B. M. Walsh, “Ho:Ho upconversion: Applications to Ho lasers,” J. Opt. Soc. Am. B 20, 1212–1219 (2003). [CrossRef]
  19. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4,” J. Phys: Condens. Matter 17, 7643–7665 (2005). [CrossRef]
  20. B. M. Walsh, N. P. Barnes, M. Petros, J. Yu, and U. N. Singh, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95, 3255–3271 (2004). [CrossRef]
  21. G. Z. Dong, X. L. Zhang, and L. Li, “Energy transfer enhanced laser cooling in Ho3+ and Tm3+-codoped lithium yttrium fluoride,” J. Opt. Soc. Am. B 30, 939–944 (2013). [CrossRef]
  22. C. W. Hoyt, M. P. Hasselbeck, and M. Sheik-Bahae, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20, 1066–1074 (2003). [CrossRef]
  23. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  24. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions,” J. Chem. Phys. 78, 5317–5323 (1983). [CrossRef]
  25. R. C. Powell, Physics of Solid-State Laser Materials (Springer-Verlag, 1998).
  26. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]
  27. T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited