OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 3064–3074

Comparison of numerical methods for modeling laser mode locking with saturable gain

Shaokang Wang, Andrew Docherty, Brian S. Marks, and Curtis R. Menyuk  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 3064-3074 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The widely used split-step Fourier method has difficulties when solving partial differential equations with saturable gain. Here, we describe a modified split-step Fourier method, and we compare it to several different algorithms for solving the Haus mode-locking equation and related equations that are used to model mode-locked lasers and other optical oscillators and amplifiers with saturable gain. These equations all include the product of a scalar nonlinearity and a stiff nonlinear operator. We find that a modified split-step method is the easiest to program with the same level of reliability and accuracy as the other methods that we investigated.

© 2013 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3280) Lasers and laser optics : Laser amplifiers
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 11, 2013
Revised Manuscript: October 1, 2013
Manuscript Accepted: October 1, 2013
Published: October 31, 2013

Shaokang Wang, Andrew Docherty, Brian S. Marks, and Curtis R. Menyuk, "Comparison of numerical methods for modeling laser mode locking with saturable gain," J. Opt. Soc. Am. B 30, 3064-3074 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68 (2003). [CrossRef]
  2. S. A. Diddams, “The evolving optical frequency comb [invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010). [CrossRef]
  3. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  4. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master mode-locking equation,” J. Opt. Soc. Am. B 19, 740–746 (2002). [CrossRef]
  5. C. R. Menyuk, J. K. Wahlstrand, J. Willits, R. P. Smith, T. R. Schibli, and S. T. Cundiff, “Pulse dynamics in mode-locked lasers: relaxation oscillations and frequency pulling,” Opt. Express 15, 6677–6689 (2007). [CrossRef]
  6. M. Shtaif, C. R. Menyuk, M. L. Dennis, and M. C. Gross, “Carrier-envelope phase locking of multipulse lasers with an intracavity Mach–Zehnder interferometer,” Opt. Express 19, 23202–23214 (2011). [CrossRef]
  7. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. 23, 171–172 (1973). [CrossRef]
  8. A. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series (Cambridge University, 1991).
  9. B. Fornberg and T. A. Driscoll, “A fast spectral algorithm for nonlinear wave equations with linear dispersion,” J. Comput. Phys. 155, 456–467 (1999). [CrossRef]
  10. L. Trefethen, Spectral Methods in MATLAB, Software, Environments and Tools Series (Cambridge University, 2000).
  11. R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations (Society for Industrial and Applied Mathematics, 2007).
  12. A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics (Cambridge University, 1996).
  13. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of spurious tones induced by the split-step method in fiber systems simulation,” IEEE Photon. Technol. Lett. 12, 489–491 (2000). [CrossRef]
  14. C. A. Kennedy and M. H. Carpenter, “Additive Runge–Kutta schemes for convection-diffusion-reaction equations,” Appl. Numer. Math. 44, 139–181 (2003). [CrossRef]
  15. S. Cox and P. Matthews, “Exponential time differencing for stiff systems,” J. Comput. Phys. 176, 430–455 (2002). [CrossRef]
  16. G. Strang, “On the construction and comparison of difference schemes,” SIAM J. Numer. Anal. 5, 506–517 (1968). [CrossRef]
  17. K. Bagrinovskii and S. Godunov, “Difference schemes for multidimensional problems,” Doklady Akademii Nauk 115, 431–433 (1957).
  18. H. Yoshida, “Construction of higher order symplectic integrators,” Phys. Lett. A 150, 262–268 (1990). [CrossRef]
  19. J. Boyd, Chebyshev and Fourier Spectral Methods, Dover Books on Mathematics (Dover Publications, 2001).
  20. G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Elsevier, 2010).
  21. L. F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam,” Proc. R. Soc. A 210, 307–357 (1911).
  22. J. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006). [CrossRef]
  23. U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, “Implicit–explicit methods for time-dependent partial differential equations,” SIAM J. Numer. Anal. 32, 797–823 (1995). [CrossRef]
  24. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Miscellaneous Titles in Applied Mathematics Series (Society for Industrial and Applied Mathematics, 1998).
  25. M. O. Williams, J. Wilkening, E. Shlizerman, and J. N. Kutz, “Continuation of periodic solutions in the waveguide array mode-locked laser,” Physica D 240, 1791–1804 (2011). [CrossRef]
  26. J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research (Springer, 2006).
  27. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2005).
  28. D. R. Mott, E. S. Oran, and B. van Leer, “A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics,” J. Comput. Phys. 164, 407–428 (2000). [CrossRef]
  29. A. Kassam and L. Trefethen, “Fourth-order time-stepping for stiff PDEs,” SIAM J. Sci. Comput. 26, 1214–1233 (2005). [CrossRef]
  30. H. Berland, B. Skaflestad, and W. M. Wright, “EXPINT-a MATLAB package for exponential integrators,” ACM Trans. Math. Softw. 33, 4 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited