OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 11 — Nov. 1, 2013
  • pp: 3079–3085

Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots

Y. Zhi, J. Valenta, and A. Meldrum  »View Author Affiliations

JOSA B, Vol. 30, Issue 11, pp. 3079-3085 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (742 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Whispering gallery modes (WGMs) in microspheres containing embedded fluorophores (e.g., organic dyes or quantum dots) may find refractometric sensing or microlasing applications. However, there have been relatively few investigations on the relationship between the intrinsic microsphere resonances and the WGMs observed in fluorescence spectra for emitters coupled to the microsphere. Here we find that an apparently simple fluorescence WGM spectrum can mask a much more complicated underlying microcavity mode structure and that the observed fluorescence spectra are controlled by the emitter linewidth. By examining the cavity structure, we also verify that an effective ensemble emitter linewidth can be extracted from the fluorescence data. Finally, spectral diffusion is suggested as a possible origin of the periodic fluorescence WGM spectra observed in many microsphere cavities, without which these resonances might be unobservable.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 26, 2013
Manuscript Accepted: September 29, 2013
Published: October 31, 2013

Virtual Issues
January 28, 2014 Spotlight on Optics

Y. Zhi, J. Valenta, and A. Meldrum, "Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots," J. Opt. Soc. Am. B 30, 3079-3085 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419, 594–597 (2002). [CrossRef]
  2. A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69, 032305 (2004). [CrossRef]
  3. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaıtre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466, 217–220 (2010). [CrossRef]
  4. T. D. Ladd and Y. Yamamoto, “Simple quantum logic gate with quantum dot cavity QED systems,” Phys. Rev. B 84, 235307 (2011). [CrossRef]
  5. S. I. Shopova, G. Farca, A. T. Rosenberger, W. M. S. Wickramanayake, and N. A. Kotov, “Microsphere whispering-gallery-mode laser using HgTe quantum dots,” Appl. Phys. Lett. 85, 6101–6103 (2004). [CrossRef]
  6. E. del Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, “Two-photon lasing by a single quantum dot in a high-Q microcavity,” Phys. Rev. B 81, 035302 (2010). [CrossRef]
  7. F. Albert, T. Braun, T. Heindel, C. Schneider, S. Reitzenstein, S. Hofling, L. Worschech, and A. Forchel, “Whispering gallery mode lasing in electrically driven quantum dot micropillars,” Appl. Phys. Lett. 97, 101108 (2010). [CrossRef]
  8. G. C. Xing, Y. L. Liao, X. Y. Wu, S. Chakrabortty, X. F. Liu, E. K. L. Yeow, Y. Chan, and Y. T. C. Stun, “Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures,” ACS Nano 6, 10835–10844 (2012). [CrossRef]
  9. K. T. Posani, V. Tripathi, S. Annamalai, N. R. Weisse-Bernstein, S. Krishna, R. Perahia, O. Crisafulli, and O. J. Painter, “Nanoscale quantum dot infrared sensors with photonic crystal cavity,” Appl. Phys. Lett. 88, 151104 (2006). [CrossRef]
  10. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94, 031101 (2009). [CrossRef]
  11. H. T. Beier, G. L. Coté, and K. E. Meissner, “Modeling whispering gallery modes in quantum dot embedded polystyrene microspheres,” J. Opt. Soc. Am. B 27, 536–543 (2010). [CrossRef]
  12. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 221108 (2008). [CrossRef]
  13. H. A. Huckabay and R. C. Dunn, “Whispering gallery mode imaging for the multiplexed detection of biomarkers,” Sens. Actuators B 160, 1262–1267 (2011). [CrossRef]
  14. H. Zhu, J. D. Suter, I. M. White, and X. Fan, “Aptamer based microsphere biosensor for thrombin detection,” Sensors 6, 785–795 (2006). [CrossRef]
  15. C. P. K. Manchee, V. Zamora, J. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcavities,” Opt. Express 19, 21540–21551 (2011). [CrossRef]
  16. Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum-dot-coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30, 51–56 (2013). [CrossRef]
  17. T. Yu, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Robust teleportation and multipartite entanglement analyzers via quantum-dot spins in weak-coupling cavity quantum electrodynamics regime,” J. Opt. Soc. Am. B 29, 2029–2034 (2012). [CrossRef]
  18. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity,” Phys. Rev. B 78, 235306 (2008). [CrossRef]
  19. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18, 10230–10246 (2010). [CrossRef]
  20. A. Pitanti, M. Ghulinyan, D. Navarro-Urrios, G. Pucker, and L. Pavesi, “Probing the spontaneous emission dynamics in Si-nanocrystals-based microdisk resonators,” Phys. Rev. Lett. 104, 103901 (2010). [CrossRef]
  21. M. D. Barnes, W. B. Whitten, S. Arnold, and J. M. Ramsey, “Homogeneous linewidths of rhodamine 6G at room temperature from cavity-enhanced spontaneous emission rates,” J. Chem. Phys. 97, 7842–7845 (1992). [CrossRef]
  22. P. Bianucci, X. Wang, J. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: mode structure, loss mechanisms and emission dynamics,” Opt. Express 18, 8466–8481 (2010). [CrossRef]
  23. Y. Zhi, C. P. K. Manchee, J. Silverstone, Z. Zhang, and A. Meldrum, “Refractometric sensing with silicon quantum dots coupled to a microsphere,” Plasmonics 8, 71–78 (2013). [CrossRef]
  24. I. Teraoka and S. Arnold, “Enhancing sensitivity of a whispering gallery mode microsphere sensor by a high-refractive index surface layer,” J. Opt. Soc. Am. B 23, 1434–1441 (2006). [CrossRef]
  25. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24, 653–659 (2007). [CrossRef]
  26. P. Bianucci, Y. Zhi, F. Marsiglio, J. Silverstone, and A. Meldrum, “Microcavity effects in ensembles of silicon quantum dots coupled to high-Q resonators,” Phys. Status Solidi A 208, 639–645 (2011). [CrossRef]
  27. http://www.wolfram.com .
  28. R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78, 023829 (2008). [CrossRef]
  29. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengfizel, and R. K. Chang, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993). [CrossRef]
  30. G. Lin, B. Qian, Y. Candela, J.-B. Jager, Z. Cai, V. Lefévre-Seguin, and J. Hare, “Excitation mapping of whispering gallery modes in silica microcavities,” Opt. Lett. 35, 583–585 (2010). [CrossRef]
  31. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11, 153–165 (1999).
  32. J. Valenta, R. Juhasz, and J. Linnros, “Photoluminescence spectroscopy of single silicon quantum dots,” Appl. Phys. Lett. 80, 1070 (2002). [CrossRef]
  33. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94, 087405 (2005). [CrossRef]
  34. J. Martin, F. Chichos, and C. von Borczyskowski, “Spectral diffusion of quasi-localized excitons in single silicon nanocrystals,” J. Lumin. 132, 2161–2165 (2012). [CrossRef]
  35. S. A. Empedocles and M. G. Bawendi, “Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots,” J. Phys. Chem. B 103, 1826–1830 (1999). [CrossRef]
  36. A. Majumdar, E. D. Kim, and J. Vuckovic, “Effect of photogenerated carriers on the spectral diffusion of a quantum dot coupled to a photonic crystal cavity,” Phys. Rev. B 84, 195304 (2011). [CrossRef]
  37. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  38. G. Sallen, A. Tribu, T. Aichele, R. André, L. Besombes, C. Bougerol, M. Richard, S. Tatarenko, K. Kheng, and J.-Ph. Poizat, “Subnanosecond spectral diffusion measurement using photon correlation,” Nat. Photonics 4, 696–699 (2010). [CrossRef]
  39. M. J. Fernée, T. Plakhotnik, Y. Louyer, B. N. Littleton, C. Potzner, P. Tamarat, P. Mulvaney, and B. Lounis, “Spontaneous spectral diffusion in CdSe quantum dots,” J. Phys. Chem. Lett. 3, 1716–1720 (2012). [CrossRef]
  40. I. Schyugov, J. Valenta, K. Mitsuishi, and J. Linnros, “Exciton localization in doped silicon nanocrystals from single dot spectroscopy studies,” Phys. Rev. B 86, 075311 (2012). [CrossRef]
  41. J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusova, K. Dohnalova, and J. Linnros, “Light-emission performance of silicon nanocrystals deduced from single quantum dot spectroscopy,” Adv. Funct. Mater. 18, 2666–2672 (2008). [CrossRef]
  42. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46, 389–396 (2007). [CrossRef]
  43. A. Tewary, M. J. F. Digonnet, J.-Y. Sung, J. H. Shin, and M. L. Brongersma, “Silicon-nanocrystal-coated silica microsphere thermo-optical switch,” IEEE J. Sel. Top. Quantum Electron. 12, 1476–1479 (2006). [CrossRef]
  44. J. Müller, J. M. Lupton, A. L. Rogach, J. Feldmann, D. V. Talapin, and H. Weller, “Monitoring surface charge migration in the spectral dynamics of single CdSe/CdS nanodot/nanorod heterostructures,” Phys. Rev. B 72, 205339 (2005). [CrossRef]
  45. H. Yukawa, S. Arnold, and M. Miyano, “Microcavity effect of dyes adsorbed on a levitated droplet,” Phys. Rev. A 60, 2491–2496 (1999). [CrossRef]
  46. K. Matsuda, T. Saiki, H. Saito, and K. Nishi, “Room-temperature photoluminescence spectroscopy of self-assembled In0.5Ga0.5As single quantum dots by using highly sensitive near-field scanning optical microscope,” Appl. Phys. Lett. 76, 73–75 (2000). [CrossRef]
  47. H. Chen, J.-Y. Sung, A. Tewary, M. Brongersma, J. H. Shin, and P. M. Fauchet, “Evidence for stimulated emission in silicon nanocrystal microspheres,” in 2nd IEEE International Conference on Group IV Photonics (2005), pp. 99–101.
  48. J. Ruan, P. M. Fauchet, L. Dal Negro, M. Cazzanelli, and L. Pavesi, “Stimulated emission in nanocrystalline silicon superlattices,” Appl. Phys. Lett. 83, 5479–5481 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited