OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3111–3116

Mid-infrared active graphene nanoribbon plasmonic waveguide devices

Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3111-3116 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003111


View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Doped graphene emerges as a strong contender for active plasmonic material in mid-infrared wavelengths due to the versatile external control of its permittivity function and also its highly compressed graphene surface plasmon (GSP) wavelength. In this paper, we design active plasmonic waveguide devices based on electrical modulation of doped graphene nanoribbons (GNRs) on a voltage-gated inhomogeneous dielectric layer. We first develop figure-of-merit (FoM) formulae to characterize the performance of passive and active graphene nanoribbon waveguides. Based on the FoMs, we choose optimal GNRs to build a plasmonic shutter, which consists of a GNR placed on top of an inhomogeneous SiO2 substrate supported by a Si nanopillar. Simulation studies show that for a simple, 50 nm long plasmonic shutter, the modulation contrast can exceed 30 dB. The plasmonic shutter is further extended to build a four-port active power splitter and an eight-port active network, both based on GNR cross-junction waveguides. For the active power splitter, the GSP power transmission at each waveguide arm can be independently controlled by an applied gate voltage with high-modulation contrast and nearly equal power-splitting proportions. From the construct of the eight-port active network, we see that it is possible to scale up the GNR cross-junction waveguides into large and complex active waveguide networks, showing great potential in an exciting new area of mid-infrared graphene plasmonic integrated nanocircuits.

© 2013 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optoelectronics

History
Original Manuscript: September 17, 2013
Revised Manuscript: October 16, 2013
Manuscript Accepted: October 16, 2013
Published: November 4, 2013

Citation
Kelvin J. A. Ooi, Hong Son Chu, Lay Kee Ang, and Ping Bai, "Mid-infrared active graphene nanoribbon plasmonic waveguide devices," J. Opt. Soc. Am. B 30, 3111-3116 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  3. R. Standley, “Plasmonics in the mid-infrared,” Nat. Photonics 6, 409–411 (2012). [CrossRef]
  4. N. Yu and F. Capasso, “Wavefront engineering for mid-infrared and terahertz quantum cascade lasers,” J. Opt. Soc. Am. B 27, B18–B35 (2010). [CrossRef]
  5. P. Chen, Q. Gan, F. J. Bartoli, and L. Zhu, “Spoof-surface-plasmon assisted light beaming in mid-infrared,” J. Opt. Soc. Am. B 27, 685–689 (2010). [CrossRef]
  6. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010). [CrossRef]
  7. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833 (2004). [CrossRef]
  8. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008). [CrossRef]
  9. A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
  10. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef]
  11. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
  12. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef]
  13. C. H. Gan, H. S. Chu, and E. P. Li, “Synthesis of highly confined surface plasmon modes with doped graphene sheets in the mid-infrared and terahertz frequencies,” Phys. Rev. B 85, 125431 (2012).
  14. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef]
  15. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
  16. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza Elorza, N. Camara, F. Javier García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
  17. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  18. Z. Lu and W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides,” J. Opt. Soc. Am. B 29, 1490–1496 (2012). [CrossRef]
  19. X. He and S. Kim, “Graphene-supported tunable waveguide structure in the terahertz regime,” J. Opt. Soc. Am. B 30, 2461–2468 (2013). [CrossRef]
  20. R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. P. Li, “Ultra-compact optical modulator by graphene induced electro-refraction effect,” Appl. Phys. Lett. 103, 061116 (2013). [CrossRef]
  21. X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, “Bends and splitters in graphene nanoribbon waveguides,” Opt. Express 21, 3486–3491 (2013). [CrossRef]
  22. S. Y. Zhou, D. A. Siegel, A. V. Fedorov, and A. Lanzara, “Metal to insulator transition in epitaxial graphene induced by molecular doping,” Phys. Rev. Lett. 101, 086402 (2008). [CrossRef]
  23. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008). [CrossRef]
  24. H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21, 3335–3345 (2011). [CrossRef]
  25. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000). [CrossRef]
  26. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B 84, 161407(R) (2011). [CrossRef]
  27. J. M. Foley, A. M. Itsuno, T. Das, S. Velicu, and J. D. Phillips, “Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector,” Opt. Lett. 37, 1523–1525 (2012). [CrossRef]
  28. D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” J. Opt. Soc. Am. B 27, 818–823 (2010). [CrossRef]
  29. E. Feigenbaum and M. Orenstein, “Perfect 4-way splitting in nano plasmonic X-junctions,” Opt. Express 15, 17948–17953 (2007). [CrossRef]
  30. P. Bai, M. X. Gu, X. C. Wei, and E. P. Li, “Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity,” Opt. Express 17, 24349–24357 (2009). [CrossRef]
  31. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef]
  32. E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited