OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3117–3122

Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique

Shu Chen, Mei-Ling Zheng, Xian-Zi Dong, Zhen-Sheng Zhao, and Xuan-Ming Duan  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3117-3122 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003117


View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nondegenerate two-photon absorption (ND-TPA) in a zinc blende-type ZnS single crystal has been investigated by using the ultrafast femtosecond pump–probe technique. ND-TPA coefficients for parallel and orthogonal polarization orientations have been determined at discrete probe wavelengths from 480 to 570 nm and a constant pump wavelength of 800 nm. The largest value of (6.40±0.76)cm/GW is found in the parallel case when probed at 480 nm, whereas the smallest value of (0.066±0.007)cm/GW appears in the orthogonal case when probed at 570 nm. Optimized scaling factors of 8126 and 4358cm/GWeV5/2 are proposed for better fitting the experimental dependence of the ND-TPA coefficient on the probe photon energy for the two polarization cases. Considering the intrinsic zinc blende symmetry and crystal orientation, the ND-TPA coefficients for the parallel and orthogonal polarization orientations are related to the imaginary part of two independent third-order susceptibility tensor elements χxxxx and χxyxy, respectively.

© 2013 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 22, 2013
Revised Manuscript: October 11, 2013
Manuscript Accepted: October 13, 2013
Published: November 4, 2013

Citation
Shu Chen, Mei-Ling Zheng, Xian-Zi Dong, Zhen-Sheng Zhao, and Xuan-Ming Duan, "Nondegenerate two-photon absorption in a zinc blende-type ZnS single crystal using the femtosecond pump–probe technique," J. Opt. Soc. Am. B 30, 3117-3122 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Klingshirn, “Non-linear optical properties of semiconductors,” Semicond. Sci. Technol. 5, 457–469 (1990). [CrossRef]
  2. S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature-and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011). [CrossRef]
  3. A. Karatay, H. G. Yaglioglu, A. Elmali, M. Parlak, and H. Karaagac, “Thickness-dependent nonlinear absorption behaviors in polycrystalline ZnSe thin films,” Opt. Commun. 285, 1471–1475 (2012). [CrossRef]
  4. T. Boggess, A. Smirl, S. Moss, I. Boyd, and E. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. 21, 488–494 (1985). [CrossRef]
  5. D. J. Hagan, E. W. Van Stryland, M. J. Soileau, Y. Y. Wu, and S. Guha, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315–317 (1988). [CrossRef]
  6. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010). [CrossRef]
  7. C. M. Cirloganu, L. A. Padilha, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. Van Stryland, “Extremely nondegenerate two-photon absorption in direct-gap semiconductors,” Opt. Express 19, 22951–22960 (2011). [CrossRef]
  8. D. C. Hutchings and E. W. Van Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B 9, 2065–2074 (1992). [CrossRef]
  9. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, “Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots,” Phys. Rev. B 75, 075325 (2007). [CrossRef]
  10. B. V. Olson, M. P. Gehlsen, and T. F. Boggess, “Nondegenerate two-photon absorption in GaSb,” Opt. Commun. 304, 54–57 (2013). [CrossRef]
  11. D. A. Fishman, C. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption,” Nat. Photonics 5, 561–565 (2011). [CrossRef]
  12. F. Boitier, J.-B. Dherbecourt, A. Godard, and E. Rosencher, “Infrared quantum counting by nondegenerate two photon conductivity in GaAs,” Appl. Phys. Lett. 94, 081112 (2009). [CrossRef]
  13. P. Apiratikul and T. E. Murphy, “Background-suppressed ultrafast optical sampling using nondegenerate two-photon absorption in a GaAs photodiode,” IEEE Photon. Technol. Lett. 22, 212–214 (2010). [CrossRef]
  14. J. Wang, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Time-resolved Z-scan measurements of optical nonlinearities,” J. Opt. Soc. Am. B 11, 1009–1017 (1994). [CrossRef]
  15. J. A. Bolger, A. K. Kar, B. S. Wherrett, R. Desalvo, D. C. Hutchings, and D. J. Hagan, “Nondegenerate 2-photon absorption-spectra of ZnSe, ZnS and ZnO,” Opt. Commun. 97, 203–209 (1993). [CrossRef]
  16. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Two-photon spectroscopy and analysis with a white-light continuum probe,” Opt. Lett. 27, 270–272 (2002). [CrossRef]
  17. M. Shui, Z. Li, X. Jin, J. Yang, Z. Nie, G. Shi, X. Wu, K. Yang, X. Zhang, and Y. Wang, “Measurements of dynamics of nondegenerate optical nonlinearity in ZnS with pulses from optical parameter generation,” Opt. Commun. 285, 1940–1944 (2012). [CrossRef]
  18. C. Corrado, Y. Jiang, F. Oba, M. Kozina, F. Bridges, and J. Z. Zhang, “Synthesis, structural, and optical properties of stable ZnS:Cu, Cl nanocrystals†,” J. Phys. Chem. A 113, 3830–3839 (2009). [CrossRef]
  19. J. Huang, Y. Yang, S. Xue, B. Yang, L. Shiyong, and J. Shen, “Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks,” Appl. Phys. Lett. 70, 2335–2337 (1997). [CrossRef]
  20. J. Leeb, V. Gebhardt, G. Müller, D. Haarer, D. Su, M. Giersig, G. McMahon, and L. Spanhel, “Colloidal synthesis and electroluminescence properties of nanoporous MnIIZnS films,” J. Phys. Chem. B 103, 7839–7845 (1999). [CrossRef]
  21. R. A. Negres, J. M. Hales, A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron. 38, 1205–1216 (2002). [CrossRef]
  22. M. Bass, Handbook of Optics, Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics, 3rd ed. (McGraw-Hill, 2010).
  23. M. Sheik-Bahae, J. Wang, and E. Van Stryland, “Nondegenerate optical Kerr effect in semiconductors,” IEEE J. Quantum Electron. 30, 249–255 (1994). [CrossRef]
  24. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  25. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 244613 (1985). [CrossRef]
  26. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc blende semiconductors,” IEEE J. Quantum Electron. 30, 256–268 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited