OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3123–3134

Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis

Richard Taubert, Mario Hentschel, and Harald Giessen  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3123-3134 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003123


View Full Text Article

Enhanced HTML    Acrobat PDF (1635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive analysis of the plasmonic analog of electromagnetically induced absorption. Interaction of plasmonic dipoles with plasmonic quadrupoles in the special case for nonvanishing retardation introduces an additional phase factor in the coupling constant, which can result in constructive interference of the two resonances. This leads to narrow resonances in the complex plasmonic absorption spectrum. We present simulations for a broad parameter space, matching experiments, as well as an extensive model analysis. Our paper comprises a situation that represents an intermediate plasmonic coupling regime, between near-field and far-field coupling.

© 2013 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(160.4236) Materials : Nanomaterials

ToC Category:
Optoelectronics

History
Original Manuscript: September 5, 2013
Revised Manuscript: October 3, 2013
Manuscript Accepted: October 5, 2013
Published: November 5, 2013

Citation
Richard Taubert, Mario Hentschel, and Harald Giessen, "Plasmonic analog of electromagnetically induced absorption: simulations, experiments, and coupled oscillator analysis," J. Opt. Soc. Am. B 30, 3123-3134 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3123


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009). [CrossRef]
  2. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption,” Nano Lett. 12, 1367–1371 (2012). [CrossRef]
  3. L. Verslegers, Z. Yu, Z. Ruan, P. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett. 108, 083903 (2012). [CrossRef]
  4. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012). [CrossRef]
  5. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  6. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]
  7. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef]
  8. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  9. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57, 2996–3002 (1998). [CrossRef]
  10. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732–4735 (1999). [CrossRef]
  11. A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, “Electromagnetically induced absorption in a four-state system,” Phys. Rev. A 61, 011802(R) (1999). [CrossRef]
  12. A. Lipsich, S. Barreiro, A. M. Akulshin, and A. Lezama, “Absorption spectra of driven degenerate two-level atomic systems,” Phys. Rev. A 61, 053803 (2000). [CrossRef]
  13. S. E. Harris, “Electromagnetically induced transparency in an ideal plasma,” Phys. Rev. Lett. 77, 5357–5360 (1996). [CrossRef]
  14. G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89, 115003 (2002). [CrossRef]
  15. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70, 37–41 (2002). [CrossRef]
  16. A. G. Litvak and M. D. Tokman, “Electromagnetically induced transparency in ensembles of classical oscillators,” Phys. Rev. Lett. 88, 095003 (2002). [CrossRef]
  17. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007). [CrossRef]
  18. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  19. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A 71, 043804 (2005). [CrossRef]
  20. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004). [CrossRef]
  21. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004). [CrossRef]
  22. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, “Tunable delay line with interacting whispering-gallery-mode resonators,” Opt. Lett. 29, 626–628 (2004). [CrossRef]
  23. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011). [CrossRef]
  24. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef]
  25. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef]
  26. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011). [CrossRef]
  27. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694–3700 (2011). [CrossRef]
  28. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011). [CrossRef]
  29. B. Luk’yanchuck, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  30. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010). [CrossRef]
  31. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010). [CrossRef]
  32. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  33. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B 83, 235427 (2011). [CrossRef]
  34. B. Gallinet and O. J. F. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5, 8999–9008 (2011). [CrossRef]
  35. F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys. 14, 023035 (2012). [CrossRef]
  36. Z. Ruan and S. Fan, “Design of subwavelength superscattering nanospheres,” Appl. Phys. Lett. 98, 043101 (2011). [CrossRef]
  37. Z. Ruan and S. Fan, “Superscattering of light from subwavelength nanostructures,” Phys. Rev. Lett. 105, 013901 (2010). [CrossRef]
  38. T. J. Davis, D. E. Gómez, and K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010). [CrossRef]
  39. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009). [CrossRef]
  40. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955). [CrossRef]
  41. B. Gallinet, T. Siegfried, H. Sigg, P. Nordlander, and O. J. F. Martin, “Plasmonic radiance: probing structure at the Angstrom scale with visible light,” Nano Lett. 13, 497–503 (2013). [CrossRef]
  42. In order to keep the fitting parameter space small for the experimental fits, the parameters ω0 and δ are determined directly from the curve and kept fixed.
  43. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal–superconductor hybrid metamaterial,” Phys. Rev. Lett. 107, 043901 (2011). [CrossRef]
  44. S. M. Anlage, “The physics and applications of superconducting metamaterials,” J. Opt. 13, 024001 (2011). [CrossRef]
  45. A. Tsiatmas, A. R. Buckingham, V. A. Fedotov, S. Wang, Y. Chen, P. A. J. de Groot, and N. I. Zheludev, “Superconducting plasmonics and extraordinary transmission,” Appl. Phys. Lett. 97, 111106 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited