OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3135–3139

Rotary dissipative spatial solitons in cylindrical lattices

Yingji He and Dumitru Mihalache  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3135-3139 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003135


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study both the stability and rotational dynamics of dissipative spatial solitons in optical media described by the cubic-quintic complex Ginzburg–Landau equation in the presence of periodic cylindrical lattices. We consider three kinds of cylindrical lattices, which are generated by (a) the refractive index modulation, (b) the linear-loss modulation, and (c) the combined modulation of both refractive index and linear-loss coefficient. The solitons can be trapped inside each concentric lattice ring (circular “trough”) and can be set into rotary motion by imposing onto the input field distribution a phase slope (or angle), which is proportional to the initial momentum imparted to the soliton in the tangential direction. The rotary motion can be effectively controlled by tuning the amplitude of the modulation profile. For either refractive index or linear-loss modulated cylindrical lattices, the spatial soliton can exhibit stably persistent rotation along the circular lattice orbit only if its initial momentum does not exceed a certain allowable maximum value. But for cylindrical lattices generated by combined refractive index modulation and linear-loss modulation, soliton rotary motion only appears in the initial propagation stage and then stops at certain spatial position. When the initial momentum imparted to the soliton is absent we find that for cylindrical lattices with only linear-loss modulation profile, by varying the modulation depth, the dissipative spatial soliton can display a transverse drift, can spread out into a stable multi-ring-shaped mode, or can decay.

© 2013 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 26, 2013
Manuscript Accepted: October 8, 2013
Published: November 7, 2013

Citation
Yingji He and Dumitru Mihalache, "Rotary dissipative spatial solitons in cylindrical lattices," J. Opt. Soc. Am. B 30, 3135-3139 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Rotary motion in Bessel optical lattices,” Phys. Rev. Lett. 93, 093904 (2004). [CrossRef]
  2. Y. J. He, B. A. Malomed, and H. Z. Wang, “Steering the motion of rotary solitons in radial lattices,” Phys. Rev. A 76, 053601 (2007). [CrossRef]
  3. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal optical solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902 (2005). [CrossRef]
  4. Y. V. Kartashov, R. Carettero-Gonzaléz, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Multipole-mode solitons in Bessel optical lattices,” Opt. Express 13, 10703–10710 (2005). [CrossRef]
  5. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Matter-wave solitons in radially periodic potentials,” Phys. Rev. E 74, 066615 (2006). [CrossRef]
  6. X. Wang, Z. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96, 083904 (2006). [CrossRef]
  7. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Solitons in complex optical lattices,” Eur. J. Phys. Special Topics 173, 87–105 (2009). [CrossRef]
  8. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  9. Z. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012). [CrossRef]
  10. C.-K. Lam, B. A. Malomed, K. W. Chow, and P. K. A. Wai, “Spatial solitons supported by localized gain in nonlinear optical waveguides,” Eur. J. Phys. Special Topics 173, 233–243 (2009). [CrossRef]
  11. D. A. Zezyulin, Y. V. Kartashov, and V. V. Konotop, “Solitons in a medium with linear dissipation and localized gain,” Opt. Lett. 36, 1200–1202 (2011). [CrossRef]
  12. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010). [CrossRef]
  13. Y. V. Kartashov, V. V. Konotop, and V. A. Vysloukh, “Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes,” Phys. Rev. A 83, 041806(R) (2011). [CrossRef]
  14. V. E. Lobanov, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stable radially symmetric and azimuthally modulated vortex solitons supported by localized gain,” Opt. Lett. 36, 85–87 (2011). [CrossRef]
  15. O. V. Borovkova, Y. V. Kartashov, V. E. Lobanov, V. A. Vysloukh, and L. Torner, “Vortex twins and anti-twins supported by multi-ring gain landscapes,” Opt. Lett. 36, 3783–3785 (2011). [CrossRef]
  16. V. Skarka, N. B. Aleksić, H. Leblond, B. A. Malomed, and D. Mihalache, “Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses,” Phys. Rev. Lett. 105, 213901 (2010). [CrossRef]
  17. Y. He and D. Mihalache, “Soliton drift or swing induced by spatially inhomogeneous losses in media described by the complex Ginzburg–Landau,” J. Opt. Soc. Am. B 29, 2554–2558 (2012). [CrossRef]
  18. H. Wang, W. Zhu, J. Liu, D. Ling, and Y. He, “Manipulating solitons by antisymmetric inhomogeneous loss in the complex Ginzburg–Landau model,” Opt. Commun. 306, 160–164 (2013). [CrossRef]
  19. Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013). [CrossRef]
  20. Y. He and D. Mihalache, “Spatial solitons in parity-time-symmetric mixed linear-nonlinear optical lattices: recent theoretical results,” Rom. Rep. Phys. 64, 1243–1258 (2012).
  21. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, 2002).
  22. B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed. (Routledge, 2005), pp. 157–160.
  23. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007). [CrossRef]
  24. P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B 6, R60–R75 (2004). [CrossRef]
  25. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005). [CrossRef]
  26. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996). [CrossRef]
  27. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef]
  28. H. Leblond, A. Komarov, M. Salhi, A. Haboucha, and F. Sanchez, “Cis bound states of three localized states of the cubic-quintic CGL equation,” J. Opt. A 8, 319–326 (2006). [CrossRef]
  29. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007). [CrossRef]
  30. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  31. W. Chang, N. Akhmediev, S. Wabnitz, and M. Taki, “Influence of external phase and gain-loss modulation on bound solitons in laser systems,” J. Opt. Soc. Am. B 26, 2204–2210 (2009). [CrossRef]
  32. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002). [CrossRef]
  33. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001). [CrossRef]
  34. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2001). [CrossRef]
  35. Y. J. He, B. A. Malomed, F. W. Ye, and B. B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010). [CrossRef]
  36. D. Mihalache, “Topological dissipative nonlinear modes in two- and three-dimensional Ginzburg-Landau models with trapping potentials,” Rom. Rep. Phys. 63, 9–24 (2011).
  37. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]
  38. Y. He, D. Mihalache, X. Zhu, L. Guo, and Y. V. Kartashov, “Stable surface solitons in truncated complex potentials,” Opt. Lett. 37, 2526–2528 (2012). [CrossRef]
  39. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical solitons in PT periodic potentials,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  40. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005). [CrossRef]
  41. D. Mihalache, “Linear and nonlinear light bullets: recent theoretical and experimental studies,” Rom. J. Phys. 57, 352–371 (2012).
  42. Y. J. He, B. A. Malomed, D. Mihalache, and H. Z. Wang, “Tunable rotary orbits of matter-wave nonlinear modes in attractive Bose-Einstein condensates,” J. Phys. B 41, 055301 (2008). [CrossRef]
  43. Y. V. Bludov and V. V. Konotop, “Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices,” Phys. Rev. A 81, 013625 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited