OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3135–3139

Rotary dissipative spatial solitons in cylindrical lattices

Yingji He and Dumitru Mihalache  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3135-3139 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003135


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study both the stability and rotational dynamics of dissipative spatial solitons in optical media described by the cubic-quintic complex Ginzburg–Landau equation in the presence of periodic cylindrical lattices. We consider three kinds of cylindrical lattices, which are generated by (a) the refractive index modulation, (b) the linear-loss modulation, and (c) the combined modulation of both refractive index and linear-loss coefficient. The solitons can be trapped inside each concentric lattice ring (circular “trough”) and can be set into rotary motion by imposing onto the input field distribution a phase slope (or angle), which is proportional to the initial momentum imparted to the soliton in the tangential direction. The rotary motion can be effectively controlled by tuning the amplitude of the modulation profile. For either refractive index or linear-loss modulated cylindrical lattices, the spatial soliton can exhibit stably persistent rotation along the circular lattice orbit only if its initial momentum does not exceed a certain allowable maximum value. But for cylindrical lattices generated by combined refractive index modulation and linear-loss modulation, soliton rotary motion only appears in the initial propagation stage and then stops at certain spatial position. When the initial momentum imparted to the soliton is absent we find that for cylindrical lattices with only linear-loss modulation profile, by varying the modulation depth, the dissipative spatial soliton can display a transverse drift, can spread out into a stable multi-ring-shaped mode, or can decay.

© 2013 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 26, 2013
Manuscript Accepted: October 8, 2013
Published: November 7, 2013

Citation
Yingji He and Dumitru Mihalache, "Rotary dissipative spatial solitons in cylindrical lattices," J. Opt. Soc. Am. B 30, 3135-3139 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3135

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited