OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3140–3144

Beam splitting using self-collimation phenomenon in photonic crystal

Mahdi Aghadjani and Mahmoud Shahabadi  »View Author Affiliations

JOSA B, Vol. 30, Issue 12, pp. 3140-3144 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose an in-plane beam splitter for self-collimated beams in a two-dimensional photonic crystal. An optical filter inserted on the propagation path of the input self-collimated beam divides this beam into two parallel equi-power self-collimated beams. The optical filter has a multistage configuration designed using well-known techniques. The proposed beam splitter has a compact configuration appropriate for integrated optics. Design procedure and the numerical results obtained using the finite-difference time-domain method, as well as a method for extraction of the S parameters of the beam splitter, are presented.

© 2013 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: May 6, 2013
Revised Manuscript: July 10, 2013
Manuscript Accepted: August 22, 2013
Published: November 7, 2013

Mahdi Aghadjani and Mahmoud Shahabadi, "Beam splitting using self-collimation phenomenon in photonic crystal," J. Opt. Soc. Am. B 30, 3140-3144 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimation phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  2. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002). [CrossRef]
  3. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar photonic crystals: from superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003). [CrossRef]
  4. X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003). [CrossRef]
  5. D. Zhao, J. Zhang, P. Yao, and X. Jiang, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  6. X. Chen, Z. Qiang, D. Zhao, Y. Wang, H. Li, Y. Qiu, and W. Zhou, “Polarization beam splitter based on photonic crystal self-collimation Mach–Zehnder interferometer,” Opt. Commun. 284, 490–493 (2011). [CrossRef]
  7. Y. Wang, H. Wang, Q. Xue, and W. Zheng, “Photonic crystal self-collimation sensor,” Opt. Express 20, 12111–12118 (2012). [CrossRef]
  8. Y. Xu, S. Wang, S. Lan, X. Lin, Q. Guo, and L. Wu, “Self-collimating polarization beam splitter based on photonic crystal Mach–Zehnder interferometer” J. Opt. Soc. Am. B 27, 1359–1363 (2010). [CrossRef]
  9. P. Huang, “Self-collimation and subwavelength imaging in two-dimensional photonic crystal” J. Optoelectron. Adv. Mater. 13, 327–330 (2011).
  10. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007). [CrossRef]
  11. W. Y. Liang, J. W. Dong, and H. Z. Wang, “Directional emitter and beam splitter based on self-collimation effect,” Opt. Express 15, 1234–1239 (2007). [CrossRef]
  12. G. G. Zheng, L. X. Shi, X. Y. Li, H. L. Wang, and J. Yuan, “Optical interconnections with photonic crystal self-collimation, directional emission and co-directional coupling mechanism,” J. Phys. D 42, 115101 (2009). [CrossRef]
  13. B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17, 61–63 (2005). [CrossRef]
  14. S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004). [CrossRef]
  15. S. Y. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003). [CrossRef]
  16. M. Shahabadi, S. Atakaramians, and N. Hojjat, “Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals,” IEE Proc. 151, 327–334 (2004). [CrossRef]
  17. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  18. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE, 2013).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics, The Finite-Difference Time-Domain Method, 2nd ed. (Artech House Inc., 2000).
  20. Y. Loiko, K. Staliunas, R. Herrero, C. Cojocaru, J. Trull, V. Sirutkaitis, D. Faccio, and T. Pertsch, “Towards observation of sub-diffractive pulse propagation in photonic crystals,” Opt. Commun. 279, 377–383 (2007). [CrossRef]
  21. Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, “Quantitative analysis of sub-diffractive light propagation in photonic crystals,” Opt. Commun. 269, 128–136 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited