OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3145–3150

Engineering optical nonlinearities in silicon–nanocrystal waveguides

Ivan D. Rukhlenko, Vineetha Kalavally, Weiren Zhu, and Malin Premaratne  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3145-3150 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003145


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The strength of the nonlinear optical effects in silicon–nanocrystal waveguides can be varied as required for applications by altering the geometry of the waveguide and the composition of its nonlinear core. By studying theoretically the geometric and composition dependencies of the mode overlap factors responsible for the nonlinear interaction between the pump and Stokes optical fields, which are separated by the Raman shift in silicon, we demonstrate that this strength can be varied in a wide range, thus offering broad opportunities for engineering optical nonlinearities in silicon–nanocrystal waveguides. The numerically calculated mode overlap factors are useful in modeling light propagation through nonlinear silicon–nanocrystal waveguides governed by the recently derived generalized nonlinear Schrödinger equations.

© 2013 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(260.2065) Physical optics : Effective medium theory

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 21, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: October 13, 2013
Published: November 7, 2013

Citation
Ivan D. Rukhlenko, Vineetha Kalavally, Weiren Zhu, and Malin Premaratne, "Engineering optical nonlinearities in silicon–nanocrystal waveguides," J. Opt. Soc. Am. B 30, 3145-3150 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. D. Rukhlenko, W. Zhu, M. Premaratne, and G. P. Agrawal, “Effective third-order susceptibility of silicon–nanocrystal-doped silica,” Opt. Express 20, 26275–26284 (2012). [CrossRef]
  2. L. Pavesi and R. Turan, eds., Silicon Nanocrystals: Fundamentals, Synthesis and Applications (Wiley, 2010).
  3. R. J. Kashtiban, U. Bangert, I. F. Crowe, M. Halsall, A. J. Harvey, and M. Gass, “Study of erbium-doped silicon nanocrystals in silica,” J. Phys. Conf. Ser. 241, 012097 (2010). [CrossRef]
  4. V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, “Silicon nanocrystals: fundamental theory and implications for stimulated emission,” Adv. Opt. Technol. 2008, 279502 (2008). [CrossRef]
  5. F. Iori, E. Degoli, R. Magri, I. Marri, G. Cantele, D. Ninno, F. Trani, O. Pulci, and S. Ossicini, “Engineering silicon nanocrystals: theoretical study of the effect of codoping with boron and phosphorus,” Phys. Rev. B 76, 085302 (2007). [CrossRef]
  6. L. Khriachtchev, ed., Silicon Nanophotonics: Basic Principles, Present Status and Perspectives (Pan Stanford, 2009).
  7. L. Sirleto, M. A. Ferrara, T. Nikitin, S. Novikov, and L. Khriachtchev, “Giant Raman gain in silicon nanocrystals,” Nat. Commun. 3, 1220 (2012). [CrossRef]
  8. K. Imakita, M. Ito, R. Naruiwa, M. Fujii, and S. Hayashi, “Enhancement of ultrafast nonlinear optical response of silicon nanocrystals by boron-doping,” Opt. Lett. 37, 1877–1879 (2012). [CrossRef]
  9. T. Nikitin, R. Velagapudi, J. Sainio, J. Lahtinen, M. Räsänen, S. Novikov, and L. Khriachtchev, “Optical and structural properties of SiOx films grown by molecular beam deposition: effect of the Si concentration and annealing temperature,” J. Appl. Phys. 112, 094316 (2012). [CrossRef]
  10. J. Wei, J. Price, T. Wang, C. Hessel, and M. C. Downer, “Size-dependent optical properties of Si nanocrystals embedded in amorphous SiO2 measured by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B 29, 04D112 (2011). [CrossRef]
  11. T. Nikitin, K. Aitola, S. Novikov, M. Räsänen, R. Velagapudi, J. Sainio, J. Lahtinen, K. Mizohata, T. Ahlgren, and L. Khriachtchev, “Optical and structural properties of silicon-rich silicon oxide films: comparison of ion implantation and molecular beam deposition methods,” Physica Status Solidi A 208, 2176–2181 (2011). [CrossRef]
  12. A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. Garcia-Ruperez, E. Jordana, P. Gautier, Y. Lebour, S. Hernandez, R. Spano, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, and J. Marti, “Ultrafast all-optical switching in a silicon–nanocrystal-based silicon slot waveguide at telecom wavelengths,” Nano Lett. 10, 1506–1511 (2010). [CrossRef]
  13. L. Ding, T. P. Chen, Y. Liu, C. Y. Ng, and S. Fung, “Optical properties of silicon nanocrystals embedded in a SiO2 matrix,” Phys. Rev. B 72, 125419 (2005). [CrossRef]
  14. I. D. Rukhlenko and M. Premaratne, “Optimization of nonlinear performance of silicon–nanocrystal cylindrical nanowires,” IEEE Photon. J. 4, 952–959 (2012). [CrossRef]
  15. F. D. Leonardis and V. M. N. Passaro, “Dispersion engineered silicon nanocrystal slot waveguides for soliton ultrafast optical processing,” Adv. Optoelectron. 2011, 751498 (2011). [CrossRef]
  16. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4, 498–499 (2010). [CrossRef]
  17. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511–517 (2010). [CrossRef]
  18. I. D. Rukhlenko, M. Premaratne, I. L. Garanovich, A. A. Sukhorukov, and G. P. Agrawal, “Analytical study of pulse amplification in silicon Raman amplifiers,” Opt. Express 18, 18324–18338 (2010). [CrossRef]
  19. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010). [CrossRef]
  20. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  21. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  22. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction (Wiley, 2004).
  23. I. D. Rukhlenko, “Theory of nonlinear pulse propagation in silicon–nanocrystal waveguides,” Opt. Express 21, 2832–2846 (2013). [CrossRef]
  24. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications,” Opt. Express 19, 206–217 (2011). [CrossRef]
  25. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon ring resonators,” Opt. Lett. 35, 55–57 (2010). [CrossRef]
  26. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  27. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, “Optimization of Raman amplification in silicon waveguides with finite facet reflectivities,” IEEE J. Sel. Top. Quantum Electron. 16, 226–233 (2010). [CrossRef]
  28. I. D. Rukhlenko, I. Udagedara, M. Premaratne, and G. P. Agrawal, “Effect of free carriers on pump-to-signal noise transfer in silicon Raman amplifiers,” Opt. Lett. 35, 2343–2345 (2010). [CrossRef]
  29. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2010). [CrossRef]
  30. C. M. Dissanayake, I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Raman-mediated nonlinear interactions in silicon waveguides: copropagating and counterpropagating pulses,” IEEE Photon. Technol. Lett. 21, 1372–1374 (2009). [CrossRef]
  31. M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: stimulated Raman scattering,” Opt. Express 17, 11565–11581 (2009). [CrossRef]
  32. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett. 34, 476–478 (2009). [CrossRef]
  33. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, “Nonlinear pulse evolution in silicon waveguides: an approximate analytic approach,” J. Lightwave Technol. 27, 3241–3248 (2009). [CrossRef]
  34. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  35. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  36. S. N. Volkov, J. J. Saarinen, and J. E. Sipe, “Effective medium theory for 2D disordered structures: a comparison to numerical simulations,” J. Mod. Opt. 59, 954–961 (2012). [CrossRef]
  37. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  38. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon–nanocrystal waveguides,” Opt. Lett. 37, 2295–2297 (2012). [CrossRef]
  39. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Maximization of gain in slow-light silicon Raman amplifiers,” Int. J. Opt. 2011, 581810 (2011). [CrossRef]
  40. I. D. Rukhlenko, C. Dissanayake, M. Premaratne, and G. P. Agrawal, “Maximization of net optical gain in silicon-waveguide Raman amplifiers,” Opt. Express 17, 5807–5814 (2009). [CrossRef]
  41. I. D. Rukhlenko, M. Premaratne, C. Dissanayake, and G. P. Agrawal, “Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation,” Opt. Lett. 34, 536–538 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited