OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3161–3167

Snake-like light beam propagation in multimode periodic segmented waveguide

Pierre Aschiéri and Valérie Doya  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3161-3167 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003161


View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article it is shown that for specific initial conditions an input beam injected in a multimode periodic segmented waveguide does not diffract and remains collimated all along the waveguide, whereas a speckle-like pattern is expected at the output of a multimode structure. This nonintuitive behavior can be explained with the help of ray and wave chaos properties. A modal analysis developed in this article reveals that this nondiffractive beam regime is due to a specific superposition of modes with regularly spaced propagation constants. A discrepancy with the commonly used equivalent continuous waveguide model is also identified.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(190.3100) Nonlinear optics : Instabilities and chaos
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: July 17, 2013
Manuscript Accepted: October 8, 2013
Published: November 8, 2013

Citation
Pierre Aschiéri and Valérie Doya, "Snake-like light beam propagation in multimode periodic segmented waveguide," J. Opt. Soc. Am. B 30, 3161-3167 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Weissman and A. Hardy, “2-D mode tapering via tapered channel waveguide segmentation,” Electron. Lett. 28, 1514–1516 (1992). [CrossRef]
  2. Z. Weissman and I. Hendel, “Analysis of periodically segmented waveguide mode expanders,” J. Lightwave Technol. 13, 2053–2058 (1995). [CrossRef]
  3. M. M. Spuhler, B. Offrein, G. Bona, R. Germann, I. Massarek, and D. Ern, “A very short planar silica spot-size converter using a nonperiodic segmented waveguide,” J. Lightwave Technol. 16, 1680–1685 (1998). [CrossRef]
  4. F. Dorgeuille, B. Mersali, S. Francois, G. Herve-Gruyer, and M. Filoche, “Spot size transformer with a periodically segmented waveguide based on InP,” Opt. Lett. 20, 581–583 (1995). [CrossRef]
  5. M. H. Chou, M. A. Arbore, and M. M. Fejer, “Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation,” Opt. Lett. 21, 794–796 (1996). [CrossRef]
  6. D. Castaldini, P. Bassi, P. Aschiéri, S. Tascu, M. D. Micheli, and P. A. Baldi, “High performance mode adapters based on segmented SPE:LiNbO3 waveguides,” Opt. Express 17, 17868–17873 (2009). [CrossRef]
  7. D. Castaldini, P. Bassi, S. Tascu, P. Aschiéri, M. P. D. Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007). [CrossRef]
  8. P. Aschiéri and M. P. de Micheli, “Highly efficient coupling in lithium niobate photonic wires by the use of a segmented waveguide coupler,” Appl. Opt. 50, 3885–3888 (2011). [CrossRef]
  9. J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in KTiOP4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990). [CrossRef]
  10. Z. Weissman, A. Hardy, M. Katz, M. Oron, and D. Eger, “Second-harmonic generation in Bragg-resonant quasi-phase-matched periodically segmented waveguides,” Opt. Lett. 20, 674–676 (1995). [CrossRef]
  11. M. Sundheimer, P. Aschieri, P. Baldi, and J. Bierlein, “Modeling and experimental observation of parametric processes in segmented KTiOPO4 channel waveguides,” Appl. Phys. Lett. 74, 1660–1662 (1999). [CrossRef]
  12. P. Aschiéri, F. Fogli, P. Aumont, M. D. Micheli, G. Bellanca, and P. Bassi, “Optical power management using second harmonic generation in periodic segmented waveguides,” Opt. Commun. 235, 55–61 (2004). [CrossRef]
  13. P. Aschiéri, V. Doya, and A. Picozzi, “Complex behaviour of a ray in a Gaussian index profile periodically segmented waveguide,” J. Opt. A 8, 386–390 (2006). [CrossRef]
  14. P. Aschiéri and V. Doya, “Ray dispersion strongly modified by a periodic index segmentation,” Opt. Commun. 283, 3673–3677 (2010). [CrossRef]
  15. J. U. Nockel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385, 45–47 (1997). [CrossRef]
  16. T. Gensty, K. Becker, I. Fischer, W. Elsäßer, C. Degen, P. Debernardi, and G. P. Bava, “Wave chaos in real-world vertical-cavity surface-emitting lasers,” Phys. Rev. Lett. 94, 233901 (2005). [CrossRef]
  17. J. Dingjan, E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Experimental observation of wave chaos in a conventional optical resonator,” Phys. Rev. Lett. 88, 064101 (2002). [CrossRef]
  18. S. Shinohara and T. Harayama, “Signature of ray chaos in quasibound wave functions for a stadium-shaped dielectric cavity,” Phys. Rev. E 75, 036216 (2007). [CrossRef]
  19. M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E 66, 056207 (2002). [CrossRef]
  20. W. Fang, A. Yamilov, and H. Cao, “Analysis of high-quality modes in open chaotic microcavities,” Phys. Rev. A 72, 023815 (2005). [CrossRef]
  21. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, “Quasiscarred resonances in a spiral-shaped microcavity,” Phys. Rev. Lett. 93, 164102 (2004). [CrossRef]
  22. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006). [CrossRef]
  23. N. Djellali, I. Gozhyk, D. Owens, S. Lozenko, M. Lebental, J. Lautru, C. Ulysse, B. Kippelen, and J. Zyss, “Controlling the directional emission of holey organic microlasers,” Appl. Phys. Lett. 95, 101108 (2009). [CrossRef]
  24. V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, “Light scarring in an optical fiber,” Phys. Rev. Lett. 88, 014102 (2001). [CrossRef]
  25. V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26, 872–874 (2001). [CrossRef]
  26. O. Bendix, J. Méndez-Bermúdez, G. Luna-Acosta, U. Kuhl, and H.-J. Stöckmann, “Design of beam splitters and microlasers using chaotic waveguides,” Microelectron. J. 36, 285–288 (2005). [CrossRef]
  27. E. D. Leonel, “Corrugated waveguide under scaling investigation,” Phys. Rev. Lett. 98, 114102 (2007). [CrossRef]
  28. P. Aschiéri and V. Doya, “Unexpected light behaviour in periodic segmented waveguides,” Chaos 21, 043118 (2011). [CrossRef]
  29. D. Ortega, R. M. D. L. Rue, and J. S. Aitchison, “Cutoff wavelength of periodically segmented waveguides in Ti:LiNbO3,” J. Lightwave Technol. 16, 284–291 (1998). [CrossRef]
  30. M. De Micheli, J. Botineau, S. Neveu, P. Sibillot, and D. B. Ostrowsky, “Independent control of index and profile in proton-exchanged lithium niobate guide,” Opt. Lett. 8, 114–115 (1983). [CrossRef]
  31. J. Vollmer, J. P. Nisius, P. Hertel, and E. Krtzig, “Refractive index profiles of LiNbO3: Ti waveguides,” Appl. Phys. A 32, 125–127 (1983). [CrossRef]
  32. V. Rastogi, A. K. Ghatak, D. B. Ostrowsky, K. Thyagarajan, and M. R. Shenoy, “Ray analysis of parabolic-index segmented planar waveguide,” Appl. Opt. 37, 4851–4856 (1998). [CrossRef]
  33. V. Mahalakshmi, K. Thyagarajan, and M. R. Shenoy, “Propagation characteristics of planar segmented waveguides with parabolic index segments,” Opt. Lett. 19, 2113–2115 (1994). [CrossRef]
  34. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University, 1998).
  35. Z. Weissman and A. Hardy, “Modes of periodically segmented waveguides,” J. Lightwave Technol. 11, 1831–1838 (1993). [CrossRef]
  36. M. D. Feit and J. J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980). [CrossRef]
  37. K. Husimi, “Some formal properties of the density matrix,” Math. Soc. Jpn. 22, 264–314 (1940).
  38. F. Fogli, N. Greco, P. Bassi, G. Bellanca, P. Aschieri, and P. Baldi, “Spatial harmonics modelling of planar periodic segmented waveguides,” Opt. Quantum Electron. 33, 485–498 (2001). [CrossRef]
  39. F. Fogli, G. Bellanca, P. Aschieri, M. D. Micheli, and P. Bassi, “Spatial harmonics analysis of deep waveguide Bragg gratings,” J. Opt. A 6, 433–438 (2004). [CrossRef]
  40. L. Li and J. Burke, “Linear propagation characteristics of periodically segmented waveguides,” Opt. Lett. 17, 1195–1197 (1992). [CrossRef]
  41. D. Stancil, “Kronig–Penny model for periodically segmented waveguides,” Appl. Opt. 35, 4767–4771 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited