OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3168–3173

Voltage-controlled multipartite entanglement with distant quantum dot molecules via adiabatic-varying tunnel coupling

Anshou Zheng, Yongjin Cheng, and Jibing Liu  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3168-3173 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003168


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An alternative voltage-controlled scheme is proposed for the generation of an N-qubit W state with distant self-assembled semiconductor quantum dot molecules (QDMs) via adiabatic-varying tunnel coupling. The N semiconductor QDMs are trapped in N spatially separated cavities coupled with N1 fibers. The present scheme takes full advantage of adiabatic passage and the exceptional features of semiconductor QDMs. The decoherence caused by the excited state spontaneous emission and the fiber loss was efficiently suppressed. In addition, our calculations show that the present scheme is robust against the deviation of the parameters.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: July 23, 2013
Manuscript Accepted: September 30, 2013
Published: November 12, 2013

Citation
Anshou Zheng, Yongjin Cheng, and Jibing Liu, "Voltage-controlled multipartite entanglement with distant quantum dot molecules via adiabatic-varying tunnel coupling," J. Opt. Soc. Am. B 30, 3168-3173 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  2. D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, “Bell’s theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990). [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  5. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  6. A. Barenco, D. Deutsch, and A. Ekert, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083–4086 (1995). [CrossRef]
  7. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997). [CrossRef]
  8. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  9. T. Yamamoto, K. Tamaki, M. Koashi, and N. Imoto, “Polarization-entangled W state using parametric down-conversion,” Phys. Rev. A 66, 064301 (2002). [CrossRef]
  10. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef]
  11. P. Zhang, Q. K. Xue, X. G. Zhao, and X. C. Xie, “Coulomb-enhanced dynamic localization and Bell-state generation in coupled quantum dots,” Phys. Rev. A 66, 022117 (2002). [CrossRef]
  12. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004). [CrossRef]
  13. L. B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007). [CrossRef]
  14. X. Y. Lü, P. J. Song, J. B. Liu, and X. X. Yang, “N-qubit W state of spatially separated single molecule magnets,” Opt. Express 17, 14298–14311 (2009). [CrossRef]
  15. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 053814 (2004). [CrossRef]
  16. Y. Wu and L. Deng, “Achieving multifrequency mode entanglement with ultraslow multiwave mixing,” Opt. Lett. 29, 1144–1146 (2004). [CrossRef]
  17. H. Mikami, Y. Li, and T. Kobayashi, “Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion,” Phys. Rev. A 70, 052308 (2004). [CrossRef]
  18. G. X. Li, “Generation of pure multipartite entangled vibrational states for ions trapped in a cavity,” Phys. Rev. A 74, 055801 (2006). [CrossRef]
  19. G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002). [CrossRef]
  20. Z. J. Deng, K. L. Gao, and M. Feng, “Generation of N-qubit W states with rf SQUID qubits by adiabatic passage,” Phys. Rev. A 74, 064303 (2006). [CrossRef]
  21. S. B. Zheng, “Multi-atom entanglement engineering and phase-covariant cloning via adiabatic passage,” J. Opt. B 7, 139–141 (2005). [CrossRef]
  22. C. E. Creffield and G. Platero, “ac-driven localization in a two-electron quantum dot molecule,” Phys. Rev. B 65, 113304 (2002). [CrossRef]
  23. J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005). [CrossRef]
  24. F. Mattinson, M. Kira, and S. Stenholm, “Adiabatic transfer between cavity modes,” J. Mod. Opt. 48, 889–903 (2001).
  25. E. Paspalakis, Z. Kis, E. Voutsinas, and A. F. Terzis, “Controlled rotation in a double quantum dot structure,” Phys. Rev. B 69, 155316 (2004). [CrossRef]
  26. A. V. Tsukanov, “Entanglement and quantum-state engineering in the optically driven two-electron double-dot structure,” Phys. Rev. A 72, 022344 (2005). [CrossRef]
  27. X. Y. Lü, J. Wu, L. L. Zheng, and Z. M. Zhan, “Voltage-controlled entanglement and quantum-information transfer between spatially separated quantum-dot molecules,” Phys. Rev. A 83, 042302 (2011). [CrossRef]
  28. M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, “An adiabatic quantum electron pump,” Science 283, 1905–1908 (1999). [CrossRef]
  29. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004). [CrossRef]
  30. P. M. Petroff, A. Lorke, and A. Imamoğlu, “Epitaxially self-assembled quantum dots,” Phys. Today 54(5), 46–52 (2001). [CrossRef]
  31. G. J. Beirne, C. Hermannstädter, L. Wang, A. Rastelli, O. G. Schmidt, and P. Michler, “Quantum light emission of two lateral tunnel-coupled (In, Ga)As/GaAs quantum dots controlled by a tunable static electric field,” Phys. Rev. Lett. 96, 137401 (2006). [CrossRef]
  32. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  33. J. Li, R. Yu, L. Si, X. Y. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009). [CrossRef]
  34. Y. Wu and X. Yang, “Exact eigenstates for a class of models describing two-mode multiphoton processes,” Opt. Lett. 28, 1793–1795 (2003). [CrossRef]
  35. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  36. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef]
  37. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242–5245 (1997). [CrossRef]
  38. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007). [CrossRef]
  39. X. Y. Lü, L. G. Si, X. Y. Hao, and X. X. Yang, “Achieving multipartite entanglement of distant atoms through selective photon emission and absorption processes,” Phys. Rev. A 79, 052330 (2009). [CrossRef]
  40. T. Calarco, A. Datta, P. Fedichev, E. Pazy, and P. Zoller, “Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence,” Phys. Rev. A 68, 012310 (2003). [CrossRef]
  41. P. Chen, C. Piermarocchi, and L. J. Sham, “Control of exciton dynamics in nanodots for quantum operations,” Phys. Rev. Lett. 87, 067401 (2001). [CrossRef]
  42. A. Tackeuchi, T. Kuroda, and K. Mase, “Dynamics of carrier tunneling between vertically aligned double quantum dots,” Phys. Rev. B 62, 1568–1571 (2001). [CrossRef]
  43. H. S. Borges, L. Sanz, J. M. Villas-Bôas, and A. M. Alcalde, “Robust states in semiconductor quantum dot molecules,” Phys. Rev. B 81, 075322 (2010). [CrossRef]
  44. F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Campman, and A. C. Gossard, “Single-electron charging in double and triple quantum dots with tunable coupling,” Phys. Rev. Lett. 75, 705–708 (1995). [CrossRef]
  45. T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots,” Phys. Rev. B 62, 16840–16855 (2000). [CrossRef]
  46. H.-F. Yao, N. Cui, Y.-P. Niu, and S.-Q. Gong, “Voltage-controlled coherent population transfer in an asymmetric semiconductor quantum dot molecule,” Photon. Nanostr. Fundam. Appl. 9, 174–178 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited