OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3193–3201

Influence of an electric field on photodegradation and self-healing in disperse orange 11 dye-doped PMMA thin films

Benjamin Anderson, Sheng-Ting Hung, and Mark G. Kuzyk  »View Author Affiliations


JOSA B, Vol. 30, Issue 12, pp. 3193-3201 (2013)
http://dx.doi.org/10.1364/JOSAB.30.003193


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The influence of an applied electric field on reversible photodegradation of disperse orange 11 doped into (poly)methyl-methacrylate (PMMA) is measured using digital imaging and conductivity measurements. Correlations between optical imaging, which measures photodegradation and recovery, and photoconductivity enables an association to be made between the damaged fragments and their contribution to current, thus establishing that damaged fragments are charged species, or polarizable. Hence, the decay and recovery process should be controllable with the applications of an electric field. Indeed, we find that the dye polymer system is highly sensitive to an applied electric field, which drastically affects the decay and recovery dynamics. We demonstrate accelerated recovery when one field polarity is applied during burning and the opposite polarity is applied during recovery. This work suggests that the damage threshold can be increased through electric field conditioning, and the results are qualitatively consistent with the domain model of Ramini. The observed behavior will provide useful input into better understanding the nature of the domains in the domain model, making it possible to design more robust materials using common polymers and molecular dopants.

© 2013 Optical Society of America

OCIS Codes
(040.5150) Detectors : Photoconductivity
(140.3330) Lasers and laser optics : Laser damage
(160.3380) Materials : Laser materials
(160.4890) Materials : Organic materials
(160.5140) Materials : Photoconductive materials
(160.5470) Materials : Polymers

ToC Category:
Materials

History
Original Manuscript: May 9, 2013
Revised Manuscript: August 22, 2013
Manuscript Accepted: October 8, 2013
Published: November 13, 2013

Citation
Benjamin Anderson, Sheng-Ting Hung, and Mark G. Kuzyk, "Influence of an electric field on photodegradation and self-healing in disperse orange 11 dye-doped PMMA thin films," J. Opt. Soc. Am. B 30, 3193-3201 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-12-3193


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. W. Taylor, J. E. Nichter, F. D. Nash, F. Haas, A. A. Szep, R. J. Michalak, B. M. Flusche, P. R. Cook, T. A. McEwen, B. F. McKeon, P. M. Payson, G. A. Brost, A. R. Pirich, C. Castaneda, B. Tsap, and H. R. Fetterman, “Radiation resistance of electro-optic polymer-based modulators,” Appl. Phys. Lett. 86, 201122 (2005). [CrossRef]
  2. G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, and M. J. Soileau, Laser-Induced Damage in Optical Materials (SPIE, 1998).
  3. P. White, G. Exarhos, M. Bowden, N. Dixon, and D. Gardiner, “Raman microprobe studies of laser-induced damage in dielectric films,” J. Mater. Res. 6, 126–133 (1991). [CrossRef]
  4. J. F. Rabek, Polymer Photodegradation: Mechanisms and Experimental Methods (Springer, 1995).
  5. S. L. Li and J. Guillet, “Photochemistry of ketone polymers. 17. photodegradation of an amorphous ethylenes–propylene copolymer,” Macrmolecules 17, 41–50 (1984).
  6. L. Cerdan, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, “New perylene-doped polymeric thin films for efficient and long-lasting lasers,” J. Mater. Chem. 22, 8938–8947 (2012). [CrossRef]
  7. W. Yunus and C. Sheng, “Photodegradation study of methylene blue (mb) trapped in poly (methyl methacrylate) (pmma) matrix,” Suranaree J. Sci. Technol. 11, 138–142 (2004).
  8. C. Fellows, U. Tauber, C. Carvalho, and C. Carvalhaes, “Amplified spontaneous emission of proton transfer dyes in polymers,” Braz. J. Phys. 35, 933–939 (2005). [CrossRef]
  9. A. Kurian, N. George, B. Paul, V. Nampoori, and C. Vallabhan, “Studies on fluorescence efficiency and photodegradation of rhodamine 6g doped PMMA using a dual beam thermal lens technique,” Laser Chem. 20, 99–110 (2002). [CrossRef]
  10. Q. Zhang, M. Canva, and G. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998). [CrossRef]
  11. J. Vydra, H. Beisinghoff, T. Tschudi, and M. Eich, “Photodecay mechanisms in side chain nonlinear optical polymethacrylates,” Appl. Phys. Lett. 69, 1035–1037 (1996). [CrossRef]
  12. M. Mortazavi, H. Yoon, and I. McCulloch, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.)35, 198 (1994).
  13. D. G. J. Sutherland, J. A. Carlisle, P. Elliker, G. Fox, T. W. Hagler, I. Jimenez, H. W. Lee, K. Pakbaz, L. J. Terminello, S. C. Williams, F. J. Himpsel, D. K. Shuh, W. M. Tong, J. J. Jia, T. A. Callcott, and D. L. Ederer, “Photo-oxidation of electroluminescent polymers studied by core-level photoabsorption spectroscopy,” Appl. Phys. Lett. 68, 2046–2048 (1996). [CrossRef]
  14. J. Kochi, “Charge-transfer excitation of molecular complexes in organic and organometallic chemistry,” Pure Appl. Chem. 63, 255–264 (1991). [CrossRef]
  15. P. Annieta, L. Joseph, L. Irimpan, P. Radhakrishnan, and V. Nampoori, “Photosensitivity of laser dye mixtures in polymer matrix: a photoacoustic study,” Unpublished Report, Cochin University of Science and Technology.
  16. B. Cumpston and K. Jensen, “Photo-oxidation of polymers used in electroluminescent devices,” Synth. Met. 73, 195–199 (1995). [CrossRef]
  17. N. Tanaka, N. Barashkov, J. Heath, and W. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45, 3846–3851 (2006). [CrossRef]
  18. A. Albini, E. Fasani, and S. Pietra, “The photochemistry of azo-dyes. The wavelength-dependent photo-reduction of 4-diethylamino-4-nitroazobenzene,” J. Chem. Soc., Perkin Trans. 2, 1393–1395 (1982).
  19. A. Dubois, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot, “Photostability of dye molecules trapped in solid matrices,” Appl. Opt. 35, 3193–3199 (1996). [CrossRef]
  20. M. D. Rahn and T. A. King, “Lasers based on doped sol-gel composite glasses,” Proc. SPIE 2288, 382–391 (1994). [CrossRef]
  21. D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6g,” J. Phys. Chem. 88, 5956–5959 (1984). [CrossRef]
  22. E. T. Knobbe, B. Dunn, P. D. Fuqua, and F. Nishida, “Laser behavior and photostability characteristics of organic dye doped silicate gel materials,” Appl. Opt. 29, 2729–2733 (1990). [CrossRef]
  23. I. P. Kaminow, L. W. Stulz, E. A. Chandross, and C. A. Pryde, “Photobleaching of organic laser dyes in solid matrices,” Appl. Opt. 11, 1563–1567 (1972). [CrossRef]
  24. G. D. Peng, Z. Xiong, and P. L. Chu, “Fluorescence decay and recovery in organic dye-doped polymer optical fibers,” J. Lightwave Technol. 16, 2365–2372 (1998). [CrossRef]
  25. B. Howell and M. G. Kuzyk, “Amplified spontaneous emission and recoverable photodegradation in disperse-orange-11-doped-polymer,” J. Opt. Soc. Am. B 19, 1790–1793 (2002). [CrossRef]
  26. Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32, 958–960 (2007). [CrossRef]
  27. L. DesAutels, M. G. Kuzyk, and C. Brewer, “Femtosecond bulk transparent material processing and recovery,” Opt. Express 17, 18808–18819 (2009). [CrossRef]
  28. P. Kobrin, R. Fisher, and A. Gurrola, “Reversible photodegradation of organic light-emitting diodes,” Appl. Phys. Lett. 85, 2385–2387 (2004). [CrossRef]
  29. B. R. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self- healing of anthraquinone derivative dye doped polymers,” Proc. SPIE 8190, 81900N (2011). [CrossRef]
  30. M. Khan, M. Renak, G. Bazan, and Z. Popovic, “Electric field assisted photodegradation of spatially confined poly(p-phenylenevinylene),” J. Am. Chem. Soc. 119, 5344–5347 (1997). [CrossRef]
  31. Y. Su, Y. Yang, H. Zhang, Y. Xie, Z. Wu, Y. Jiang, N. Fukata, Y. Bando, and Z. Wang, “Enhanced photodegradation of methyl orange with Tio2 nanoparticles using a triboelectric nanogenerator,” Nanotechnology 24, 295401 (2013). [CrossRef]
  32. K.-S. Kang, W. Sisk, M. Raja, and F. Farahi, “Field-enhanced photodegradation of pyrromethene dye films,” J. Photochem. Photobiol., A 121, 133–140 (1999). [CrossRef]
  33. S. K. Ramini and M. G. Kuzyk, “A self healing model based on polymer-mediated chromophore correlations,” J. Chem. Phys. 137, 054705 (2012). [CrossRef]
  34. S. K. Ramini, B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer,” Polym. Chem. 4, 4948–4954 (2013). [CrossRef]
  35. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some disperse red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999). [CrossRef]
  36. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, L. Sukhomlinova, R. J. Twieg, K. P. Chan, T. C. Kowalczyk, and H. S. Lackritz, “Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment,” J. Opt. Soc. Am. B 17, 1992–2000 (2000). [CrossRef]
  37. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, K. P. Chan, T. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, and S. Thayumanavan, “Systematic behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000). [CrossRef]
  38. A. Galvan-Gonzalez, G. I. Stegeman, A. K.-Y. Jen, X. Wu, M. Canva, A. C. Kowalczyk, X. Q. Zhang, H. S. Lackritz, S. Marder, S. Thayumanavan, and G. Levina, “Photostability of electro-optic polymers possessing chromophores with efficient amino donors and cyano-containing acceptors,” J. Opt. Soc. Am. B 18, 1846–1853 (2001). [CrossRef]
  39. B. Howell and M. G. Kuzyk, “Lasing action and photodegradation of disperse orange 11 dye in liquid solution,” Appl. Phys. Lett. 85, 1901–1903 (2004). [CrossRef]
  40. N. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129, 054504 (2008). [CrossRef]
  41. S. K. Ramini, B. R. Anderson, and M. G. Kuzyk, “Recent progress in reversible photodegradation of disperse orange 11 when doped in PMMA,” Proc. SPIE 8190, 81900P (2011). [CrossRef]
  42. N. J. Westfall and C. W. Dirk, “The photochemistry of the self-healing chromophore disperse orange 11,” J. Phys. Org. Chem. 25, 704–712 (2012). [CrossRef]
  43. B. Anderson, S. K. Ramini, and M. G. Kuzyk, “Imaging studies of photodamage and self-healing in disperse orange 11 dye-doped pmma,” J. Opt. Soc. Am. B 28, 528–532 (2011). [CrossRef]
  44. B. R. Anderson, S. T. Hung, and M. G. Kuzyk, “Testing theories of self healing using photoconductivity as a probe of photodegradation and recovery,” Proc. SPIE 8519, 85190H (2012). [CrossRef]
  45. K. Zimmerman, F. Ghebremichael, M. G. Kuzyk, and C. W. Dirk, “Electric-field-induced polarization current studies in guest-host polymers,” J. Appl. Phys. 75, 1267–1285 (1994). [CrossRef]
  46. J. Chilton and M. T. Goosey, eds., Special Polymers for Electronics & Optoelectronics (Chapman & Hall, 1995).
  47. M. N. Vijayashree, S. V. Subramanyam, and A. G. Samuelson, “A new organic conducting material derived from 1,4-diaminoanthraquinon,” Macromolecules 25, 2988–2990 (1992). [CrossRef]
  48. H. O. Yadav, P. Raghavan, and T. Varadarajan, “Structural dependence on electrical properties of anthraquinone derivatives,” Synth. Met. 57, 5094–5099 (1993). [CrossRef]
  49. W. E. B. Shepherd, “Aggregate formation and its effect on (opto)electronic properties of guest-host organic semiconductors,” Appl. Phys. Lett. 97, 163303 (2010). [CrossRef]
  50. D. I. Son, “Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal Zno quantum dot-polymethylmethacrylate polymer nanocomposites,” Appl. Phys. Lett. 97, 013304 (2010). [CrossRef]
  51. H.-W. Zan and K.-H. Yen, “High photoresponsivity of pentacene-based organic thin-film transistors with UV-treated pmma dielectrics,” Electrochem. Solid-State Lett. 11, H222–H225 (2008). [CrossRef]
  52. B. García, M. A. Ocampo, G. Luna-Bárcenas, R. García, I. Mejia, F. Rodríguez Melgarejo, C. H. OR. Fernández Loyola, K. Sánchez Catalán, N. Flores Ramírez, S. R. Vásquez García, C. Ortiz-Estrada, B. Garcia-Gaitan, and R. Zavala, “Structural and electrical characterization of isotactic pmma thin films deposited by spin coating,” Macromol. Symp. 283, 342–347 (2009). [CrossRef]
  53. M. Fukushima, “Effects of dopants and polymer structures on electrical conductivity of organosilicon polymers,” Synth. Met. 94, 299–306 (1998). [CrossRef]
  54. M. Ieda, “Electrical conduction and carrier traps in polymeric materials,” IEEE Trans. Electr. Insul. EI-19, 162–178 (1984). [CrossRef]
  55. W. N. Sisk, K.-S. Kang, M. Y. A. Raja, and F. Farahi, “Matrix and donor-acceptor dependence of polymer dispersed pyrromethene dye photoconductivity,” Int. J. Optoelectron. 10, 95–103 (1995).
  56. F. Yakuphanoglu and B. Senkal, “Electrical conductivity, photoconductivity, and optical properties of poly(1,4-diaminoanthraquinone) organic semiconductor for optoelectronic applications,” Polym. Adv. Technol. 19, 1193–1198 (2008). [CrossRef]
  57. M. G. Kuzyk, E. W. Taylor, N. Embaye, Y. Zhe, and J. Zhou, “Hardening of polymer optical materials with laser cycling and gamma-rays,” Proc. SPIE 6713, 671308 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited