OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3215–3224

Analysis of transient response and instability in fiber ring resonators containing an erbium-doped fiber amplifier and quantum dot-doped fiber saturable absorber

Sara Tofighi and Ali Reza Bahrampour  »View Author Affiliations

JOSA B, Vol. 30, Issue 12, pp. 3215-3224 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the transient response of a double coupler fiber ring resonator containing an erbium-doped fiber amplifier (EDFA) in half part of the fiber ring resonator and a quantum dot-doped fiber (QDF) saturable absorber in the other half, is investigated. It is demonstrated that, depending on the device parameters and the input power of the signal and pump, various types of dynamic behaviors (such as bistability, monostability, and regenerative pulsation) can be observed in this intrinsic, optical bistable device. The proposed device can be exploited by optical communication networks to realize all-optical functionalities.

© 2013 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos

ToC Category:
Nonlinear Optics

Original Manuscript: August 15, 2013
Revised Manuscript: October 7, 2013
Manuscript Accepted: October 10, 2013
Published: November 15, 2013

Sara Tofighi and Ali Reza Bahrampour, "Analysis of transient response and instability in fiber ring resonators containing an erbium-doped fiber amplifier and quantum dot-doped fiber saturable absorber," J. Opt. Soc. Am. B 30, 3215-3224 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Daniel and G. P. Agrawal, “Phase-switched all-optical flip-flops using two-input bistable resonators,” IEEE Photon. Technol. Lett. 24, 479–481 (2012). [CrossRef]
  2. Q. M. Ngo, K. Q. Le, and V. D. Lam, “Optical bistability based on guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29, 1291–1295 (2012). [CrossRef]
  3. A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip-flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009). [CrossRef]
  4. A. R. Bahrampour, S. S. Zakeri, S. M. A. Mirzaee, Z. Ghaderi, and F. Farman, “All-optical set-reset flip-flop based on frequency bistability in semiconductor microring lasers,” Opt. Commun. 282, 2451–2456 (2009). [CrossRef]
  5. B. Li, M. I. Memon, G. Mezosi, Z. Wang, M. Sorel, and S. Yu, “All-optical digital logic gates using bistable semiconductor ring lasers,” Opt. Commun. 30, 190–194 (2009).
  6. S. L. McCall, “Instability and regenerative pulsation phenomena in Fabry–Perot nonlinear optic media devices,” Appl. Phys. Lett. 32, 284–286 (1978). [CrossRef]
  7. R. Wang, P. Yeh, H. Chang, X. Yi, and J. Zhao, “All-optical pulse generators for pulse coupled neurons,” Proc. SPIE 3715, 46 (1999). [CrossRef]
  8. R. Bonifacio and L. A. Lugiato, “Instabilities for a coherently driven absorber in a ring cavity,” Lett. Nuovo Cimento 21, 510–516, 1978. [CrossRef]
  9. R. Bonifacio, M. Gronchi, and L. A. Lugiato, “Self-pulsing in bistable absorption,” Opt. Commun. 30, 129–133 (1979). [CrossRef]
  10. K. Ikeda and O. Akimoto, “Instability leading to periodic and chaotic self-pulsations in a bistable optical cavity,” Phys. Rev. Lett. 48, 617–620 (1982). [CrossRef]
  11. J. W. Song, S. Y. Shin, and Y. S. Kwon, “Optical bistability, regenerative oscillation, and monostable pulse generation in a liquid crystal bistable optical device,” Appl. Opt. 23, 1521–1524 (1984). [CrossRef]
  12. N. Mitra and S. Mukhopadhyay, “A method of developing all-optical mono-stable multivibrator system exploiting the Kerr non-linearity of medium,” Optik 122, 92–94 (2011). [CrossRef]
  13. K. Ikeda, H. Daido, and O. Akimoto, “Optical turbulence: chaotic behavior of transmitted light from a ring cavity,” Phys. Rev. Lett. 45, 7009–7112 (1980).
  14. H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, “Observation of chaos in optical bistability,” Phys. Rev. Lett. 46, 474–477 (1981). [CrossRef]
  15. T. Takizawa, Y. Liu, and J. Ohtsubo, “Chaos in a feedback Fabry–Perot interferometer,” IEEE J. Quantum Electron. 30, 334–338 (1994). [CrossRef]
  16. N. B. An, N. T. Dan, and H. X. Nguyen, “Excitonic bistabilities, instabilities and chaos in laser-pumped semiconductors,” Phys. Scr. 49, 380–384 (1994). [CrossRef]
  17. H. M. Gibbs, J. L. Jewell, J. V. Moloney, K. Tai, S. S. Tarng, D. A. Weinberger, A. C. Gossard, S. L. McCall, A. Passner, and W. Weigmann, “Optical bistability, regenerative pulsations, and transverse effects in room-temperature GaAs–AlGaAs superlattice etalons,” J. Phys. 44, 195–204 (1983). [CrossRef]
  18. W. J. Firth, A. J. Scroggie, G. S. McDonald, and L. A. Lugiato, “Hexagonal patterns in optical bistability,” Phys. Rev. A 46, R3609–R3612 (1992). [CrossRef]
  19. A. E. Barberoshie, I. I. Gontsya, Y. N. Nika, and A. K. Rotaru, “Noise-induced optical multistability,” J. Exp. Theor. Phys. 77, 211–217 (1993).
  20. K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun. 30, 257–261 (1979). [CrossRef]
  21. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012). [CrossRef]
  22. P. A. Costanzo-Caso, Y. Jin, S. Granieri, and A. Siahmakoun, “Optical bistability in a nonlinear SOA-based fiber ring resonator,” J. Nonlinear Opt. Phys. Mat. 20, 281–292 (2011). [CrossRef]
  23. P. P. Yupapin, P. Saeung, and W. Suwancharoen, “Coupler-loss and coupling-coefficient dependence of bistability and instability in a fiber ring resonator: nonlinear behaviors,” J. Nonlinear Opt. Phys. Mat. 16, 111–118 (2007). [CrossRef]
  24. J. E. Heebner and R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999). [CrossRef]
  25. C. Li, N. Dou, and P. P. Yupapin, “Milliwatt and nanosecond all-optical switching in a double-coupler ring resonator containing an EDFA,” J. Opt. A 8, 728 (2006). [CrossRef]
  26. N. Dou and C. Li, “Optical bistability in fiber ring resonator containing an EDFA,” Opt. Commun. 281, 2238–2242 (2008). [CrossRef]
  27. S. Tofighi, S. S. Farshemi, B. Sajjad, F. Shahshahani, and A. R. Bahrampour, “Optical bistability in fiber ring resonator containing an erbium-doped fiber amplifier and quantum dot doped fiber saturable absorber,” Appl. Opt. 51, 7016–7024 (2012). [CrossRef]
  28. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  29. C. Cheng and H. Zhang, “Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier,” Opt. Commun. 277, 372–378 (2007). [CrossRef]
  30. K. Kang, K. Daneshvar, and R. Tsu, “Size dependence saturation and absorption of PbS quantum dots,” Microelectron. J. 35, 629–633 (2004). [CrossRef]
  31. J. F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72, 175–178 (2001). [CrossRef]
  32. J. E. Raynolds and M. LoCascioa, “Semiconductor nanocrystal based saturable absorbers for optical switching applications,” MRS Proc. 737, E4.5 (2002). [CrossRef]
  33. A. R. Bahrampour and M. Mahjoei, “Theoretical analysis of spectral hole-burning in all-optical gain-stabilized multi-channel fiber amplifiers,” Sci. Iranica 9, 125–132 (2002).
  34. A. R. Bahrampour, M. Mahjoei, and A. Rasouli, “A theoretical analysis of the effects of erbium ion pair on the dynamics of an optical gain stabilized fiber amplifier,” Opt. Commun. 265, 283–300 (2006). [CrossRef]
  35. A. Polman, “Erbium as a probe of everything?” Physica B 300, 78–90 (2001).
  36. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic, 2008). [CrossRef]
  37. A. W. Naji, B. A. Hamida, X. S. Cheng, M. A. Mahdi, S. Harun, S. Khan, W. F. Al-Khateeb, A. A. Zaidan, B. B. Zaidan, and H. Ahmad, “Review of erbium-doped fiber amplifier,” Int. J. Phys. Sci. 6, 4674–4689 (2011).
  38. K. Y. Ko, M. S. Demokan, and H. Y. Tam, “Transient analysis of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 1436–1438 (1994). [CrossRef]
  39. S. Baskoutas and A. F. Terzis, “Size-dependent bandgap of colloidal quantum dots,” J. Appl. Phys. 99, 013708 (2006). [CrossRef]
  40. A. R. Bahrampour, H. Rooholamini, L. Rahimi, and A. A. Askari, “An inhomogeneous theoretical model for analysis of PbSe quantum-dot-doped fiber amplifier,” Opt. Commun. 282, 4449–4454 (2009). [CrossRef]
  41. C. Cheng, “A multiquantum-dot-doped fiber amplifier with characteristics of broadband, flat gain, and low noise,” J. Lightwave Technol. 26, 1404–1410 (2008). [CrossRef]
  42. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  43. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  44. B. Pedersen, A. Bjarklev, O. Lumholt, and J. H. Povlsen, “Detailed design analysis of erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 3, 548–550 (1991). [CrossRef]
  45. E. X. DeJesus and C. Kaufman, “Routh–Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited