OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3278–3283

Hybrid master oscillator power amplifier system providing 10  mJ, 32  W, and 50  MW pulses for optical parametric chirped-pulse amplification pumping

Andreas Vaupel, Nathan Bodnar, Benjamin Webb, Lawrence Shah, Michaël Hemmer, Eric Cormier, and Martin Richardson  »View Author Affiliations

JOSA B, Vol. 30, Issue 12, pp. 3278-3283 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (791 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a high-energy, high-average-power picosecond laser system based on a hybrid chain in a master oscillator power amplifier configuration. The chain is seeded by a Ti:sapphire oscillator, followed by a Yb-doped fiber preamplifier, a Nd:YAG-based regenerate amplifier, and a Nd:YVO4-based single-pass amplifier. The final diode-pumped, solid-state amplifier is detailed and produces pulses with more than 10 mJ energy at 32 W average power with 207 ps duration, corresponding to 50 MW peak power. The picosecond pulse output is seeded and optically synchronized with the sub-5-fs oscillator for optical parametric chirped-pulse amplification pumping.

© 2013 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 10, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: October 31, 2013
Published: November 21, 2013

Andreas Vaupel, Nathan Bodnar, Benjamin Webb, Lawrence Shah, Michaël Hemmer, Eric Cormier, and Martin Richardson, "Hybrid master oscillator power amplifier system providing 10  mJ, 32  W, and 50  MW pulses for optical parametric chirped-pulse amplification pumping," J. Opt. Soc. Am. B 30, 3278-3283 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Herrmann, L. Veisz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, “Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification,” Opt. Lett. 34, 2459–2461 (2009). [CrossRef]
  2. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22  W of average power at 1  MHz repetition rate,” Opt. Express 20, 10870–10878 (2012). [CrossRef]
  3. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, and I. V. Yakovlev, “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4, 421–427 (2007). [CrossRef]
  4. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, and F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34, 2123–2125 (2009). [CrossRef]
  5. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36, 2456–2458 (2011). [CrossRef]
  6. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34, 3439–3441 (2009). [CrossRef]
  7. E. A. Perevezentsev, I. B. Mukhin, I. I. Kuznetsov, O. V. Palashov, and E. A. Khazanov, “Cryogenic disk Yb: YAG laser with 120  mJ energy at 500  Hz pulse repetition rate,” Quantum Electron. 43, 207–210 (2013).
  8. K.-H. Hong, J. T. Gopinath, D. Rand, A. M. Siddiqui, S.-W. Huang, E. Li, B. J. Eggleton, J. D. Hybl, T. Y. Fan, and F. X. Kärtner, “High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier,” Opt. Lett. 35, 1752–1754 (2010). [CrossRef]
  9. B. A. Reagan, K. A. Wernsing, A. H. Curtis, F. J. Furch, B. M. Luther, D. Patel, C. S. Menoni, and J. J. Rocca, “Demonstration of a 100  Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser,” Opt. Lett. 37, 3624–3626 (2012). [CrossRef]
  10. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18, 24770–24792 (2010). [CrossRef]
  11. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “High energy picosecond Yb:YAG CPA system at 10  Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19, 5357–5363 (2011). [CrossRef]
  12. S. Klingebiel, I. Ahmad, C. Wandt, C. Skrobol, S. A. Trushin, Z. Major, F. Krausz, and S. Karsch, “Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup,” Opt. Express 20, 3443–3455 (2012). [CrossRef]
  13. M. Lührmann, C. Theobald, R. Wallenstein, and J. A. L’huillier, “High energy cw-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation,” Opt. Express 17, 22761–22766 (2009). [CrossRef]
  14. C. Heese, A. E. Oehler, L. Gallmann, and U. Keller, “High-energy picosecond Nd:YVO4 slab amplifier for OPCPA pumping,” Appl. Phys. B 103, 5–8 (2011). [CrossRef]
  15. D. W. E. Noom, S. Witte, J. Morgenweg, R. K. Altmann, and K. S. E. Eikema, “High-energy, high-repetition-rate picosecond pulses from a quasi-CW diode-pumped Nd:YAG system,” Opt. Lett. 38, 3021–3023 (2013). [CrossRef]
  16. K. Michailovas, V. Smilgevicius, and A. Michailovas, “Kilohertz rate picosecond pulses amplifier for pumping of OPCPA system,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AW4A.3.
  17. K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, and R. Poprawe, “MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling, and scaling limits,” Proc. SPIE 6100, 610016 (2006).
  18. M. Hemmer, A. Vaupel, and M. Richardson, “Current status of the HERACLES, a millijoule level, multi kHz, few-cycle, and CEP stabilized OPCPA system,” in Conference on Lasers and Electro-Optics 2010, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuFF5.
  19. S. Adachi, H. Ishii, T. Kanai, N. Ishii, A. Kosuge, and S. Watanabe, “1.5  mJ, 6.4  fs parametric chirped-pulse amplification system at 1  kHz,” Opt. Lett. 32, 2487–2489 (2007). [CrossRef]
  20. M. Hemmer, A. Vaupel, M. Wohlmuth, and M. Richardson, “OPCPA pump laser based on a regenerative amplifier with volume Bragg grating spectral filtering,” Appl. Phys. B 106, 599–603 (2012). [CrossRef]
  21. M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, “Multi-kHz, multi-mJ, phase stabilized, OPCPA amplifier system,” Proc. SPIE 7578, 757818 (2010).
  22. A. V. Okishev, C. Dorrer, V. I. Smirnov, L. B. Glebov, and J. D. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197–8202 (2007). [CrossRef]
  23. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett. 36, 2755–2757 (2011). [CrossRef]
  24. J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A. P. Piskarskas, and A. Varanavicius, “High-energy Nd:YAG-amplification system for OPCPA pumping,” Quantum Electron. 42, 567–574 (2012).
  25. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  26. S. Seidel and N. Kugler, “Nd: YAG 200-W average-power oscillator-amplifier system with stimulated-Brillouin-scattering phase conjugation and depolarization compensation,” J. Opt. Soc. Am. B 14, 1885–1888 (1997). [CrossRef]
  27. J. Schwarz, M. Ramsey, D. Headley, P. Rambo, I. Smith, and J. Porter, “Thermal lens compensation by convex deformation of a flat mirror with variable annular force,” Appl. Phys. B 82, 275–281 (2006). [CrossRef]
  28. E. Wyss and M. Roth, “Thermooptical compensation methods for high-power lasers,” IEEE J. Quantum Electron. 38, 1620–1628 (2002). [CrossRef]
  29. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10, 350–351 (1980). [CrossRef]
  30. Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Study on thermally induced depolarization of a probe beam by considering the thermal lens effect,” J. Phys. D 42, 235108 (2009).
  31. Y. Wang, K. Inoue, H. Kan, T. Ogawa, and S. Wada, “Birefringence compensation of two tandem-set Nd:YAG rods with different thermally induced features,” J. Opt. A 11, 125501 (2009).
  32. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971). [CrossRef]
  33. N. Andreev and N. Bondarenko, “Single-mode YAG:Nd laser with a stimulated Brillouin scattering mirror and conversion of radiation to the second and fourth harmonics,” Sov. J. Quantum Electron. 21, 1045–1051 (1991). [CrossRef]
  34. M. Ostermeyer, G. Klemz, P. Kubina, and R. Menzel, “Quasi-continuous-wave birefringence-compensated single-and double-rod Nd:YAG lasers,” Appl. Opt. 41, 7573–7582 (2002). [CrossRef]
  35. D. B. Quality, N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan, “A two-channel repetitively pulsed Nd: YAG laser operating at 25  Hz with diffraction-limited beam quality,” IEEE J. Quantum Electron. 35, 110–114 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited