OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 12 — Dec. 1, 2013
  • pp: 3316–3323

Theory of coupled optoelectronic microwave oscillator II: phase noise

Andrey B. Matsko, Danny Eliyahu, and Lute Maleki  »View Author Affiliations

JOSA B, Vol. 30, Issue 12, pp. 3316-3323 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The result of a theoretical and experimental study on the phase fluctuations of a coupled optoelectronic oscillator is presented. We derive an analytical expression for the fundamental limit of phase noise of a radio-frequency signal generated in the oscillator and compare it with experimental data. We show that the noise can be extremely low, approaching 160dBc/Hz at 10 kHz offset for reasonable experimental parameters. The experimentally observed noise is 15 dB higher due to technical noise of the system.

© 2013 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.4910) Optical devices : Oscillators
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optical Devices

Original Manuscript: August 16, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: November 3, 2013
Published: November 27, 2013

Andrey B. Matsko, Danny Eliyahu, and Lute Maleki, "Theory of coupled optoelectronic microwave oscillator II: phase noise," J. Opt. Soc. Am. B 30, 3316-3323 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. S. Yao and L. Maleki, “Dual microwave and optical oscillator,” Opt. Lett. 22, 1867–1869 (1997). [CrossRef]
  2. X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18, 73–78 (2000). [CrossRef]
  3. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 30, 1231–1233 (2005). [CrossRef]
  4. E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photon. Technol. Lett. 19, 444–446 (2007). [CrossRef]
  5. F. Quinlan, C. Williams, S. Ozharar, S. Gee, and P. J. Delfyett, “Self-stabilization of the optical frequencies and the pulse repetition rate in a coupled optoelectronic oscillator,” J. Lightwave Technol. 26, 2571–2577 (2008). [CrossRef]
  6. S. Cai, S. Pan, D. Zhu, and X. Chen, “Stabilize the coupled optoelectronic oscillator by an unpumped erbium-doped fiber,” in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2012), paper ATh2C.5.
  7. W. Loh, S. Yegnanarayanan, J. Plant, F. J. O’Donnell, M. Grein, J. Klamkin, S. Madison, R. Ram, and P. W. Juodawlkis, “RF-amplifier-free coupled optoelectronic oscillator (COEO),” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTu3A.6.
  8. P. J. Delfyett, S. Gee, M. T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yimaz, “Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications,” J. Lightwave Technol. 24, 2701–2719 (2006). [CrossRef]
  9. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A 11, 103001 (2009). [CrossRef]
  10. F. Rana, R. J. Ram, and H. A. Haus, “Quantum noise of actively mode-locked lasers with dispersion and amplitude/phase modulation,” IEEE J. Quantum Electron. 40, 41–56 (2004). [CrossRef]
  11. S. Ozharar, I. Ozdur, F. Quinlan, and P. J. Delfyett, “Jitter reduction by intracavity active phase modulation in a mode-locked semiconductor laser,” Opt. Lett. 34, 677–679 (2009). [CrossRef]
  12. G. R. Huggett, “Mode-locking of CW lasers by regenerative RF feedback,” Appl. Phys. Lett. 13, 186–187 (1968). [CrossRef]
  13. T. S. Kinsel, “A stabilized mode-locked Nd: YAG laser using electronic feedback,” IEEE J. Quantum Electron. 9, 3–8 (1973). [CrossRef]
  14. K. Y. Lau and A. Yariv, “Self-sustained picosecond pulse generation in a GaAlAs laser at an electrically tunable repetition rate by optoelectronic feedback,” Appl. Phys. Lett. 45, 124–126 (1984). [CrossRef]
  15. M. Nakazawa, T. Nakashima, and M. Tokuda, “An optoelectronic self-oscillatory circuit with an optical fiber delayed feedback and its injection locking technique,” J. Lightwave Technol. 2, 719–730 (1984). [CrossRef]
  16. D. E. Spence, J. M. Evans, W. E. Sleat, and W. Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 1762–1764 (1991). [CrossRef]
  17. L. Turi and F. Krausz, “Amplitude modulation mode locking of lasers by regenerative feedback,” Appl. Phys. Lett. 58, 810–812 (1991). [CrossRef]
  18. J. D. Kafka, M. L. Watts, and J. J. Pieterse, “Picosecond and femtosecond pulse generation in a regeneratively mode-locked Ti:sapphire laser,” IEEE J. Quantum Electron. 28, 2151–2162 (1992). [CrossRef]
  19. M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fiber laser,” Electron. Lett. 30, 1603–1605 (1994). [CrossRef]
  20. M. Nakazawa, E. Yoshida, E. Yamada, and Y. Kimura, “A repetition rate stabilized and tunable, regeneratively mode-locked fiber laser using an offset-locking technique,” Jpn. J. Appl. Phys. 35, L691–L694 (1996). [CrossRef]
  21. M. Nakazawa, E. Yoshida, and K. Tamura, “Ideal phase-locked-loop (PLL) operation of a 10  GHz erbium-doped fiber laser using regenerative mode-locking as an optical voltage controlled oscillator,” Electron. Lett. 33, 1318–1320 (1997). [CrossRef]
  22. B. Bakshi, P. A. Andrekson, and X. Zhang, “10  GHz mode-locked, dispersion-managed and polarization-maintaining erbium fiber ring laser with variable output coupling,” Electron. Lett. 34, 884–885 (1998). [CrossRef]
  23. K. K. Gupta, D. Novak, and H.-F. Liu, “Noise characterization of a regeneratively mode-locked fiber ring laser,” IEEE J. Quantum Electron. 36, 70–78 (2000). [CrossRef]
  24. K. K. Gupta and N. Onodera, “Regenerative mode locking via superposition of higher-order cavity modes in composite cavity fiber lasers,” Opt. Lett. 30, 2221–2223 (2005). [CrossRef]
  25. K. Koizumi, M. Yoshida, T. Hirooka, and M. Nakazawa, “10  GHz, 1.1  ps optical pulse generation from a regeneratively mode-locked Yb fiber laser in the 1.1  m band,” Opt. Express 19, 25426–25432 (2011). [CrossRef]
  26. A. Bekal, K. Vijayan, and B. Srinivasan, “Study of pulse stability enhancement in regeneratively mode-locked fiber laser,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper TPo.1.
  27. D. A. Howe and A. Hati, “Low-noise X-band oscillator and amplifier technologies: comparison and status,” in Proceedings of 2005 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and PTTI (IEEE, 2005), pp. 481–487.
  28. C. McNeilage, J. H. Searls, E. N. Ivanov, P. R. Stockwell, D. M. Green, and M. Mossammaparast, “A review of sapphire whispering gallery-mode oscillators including technical progress and future potential of the technology,” in Proceedings of 2004 IEEE International Frequency Control Symposium and Exposition (IEEE, 2004), pp. 210–218.
  29. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–651 (2005). [CrossRef]
  30. A. B. Matsko, D. Eliyahu, P. Koonath, D. Seidel, and L. Maleki, “Theory of coupled optoelectronic microwave oscillator I: expectation values,” J. Opt. Soc. Am. B 26, 1023–1031 (2009). [CrossRef]
  31. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  32. H. A. Haus, M. Margalit, and C. X. Yu, “Quantum noise of mode locked lasers,” J. Opt. Soc. Am. B 17, 1240–1256 (2000). [CrossRef]
  33. F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics 7, 290–293 (2013). [CrossRef]
  34. F. Quinlan, T. M. Fortier, H. Jiang, and S. A. Diddams, “Analysis of shot noise in the detection of ultrashort optical pulse trains,” J. Opt. Soc. Am. B 30, 1775–1785 (2013). [CrossRef]
  35. F. Rana, H. L. T. Lee, R. J. Ram, M. E. Grein, L. A. Jiang, E. P. Ippen, and H. A. Haus, “Characterization of the noise and correlations in harmonically mode-locked lasers,” J. Opt. Soc. Am. B 19, 2609–2621 (2002). [CrossRef]
  36. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited