OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 244–250

Pockels’ coefficients of alumina in aluminosilicate optical fiber

Peter D. Dragic, John Ballato, Stephanie Morris, and Thomas Hawkins  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 244-250 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000244


View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photoelastic constants of the alumina component in aluminosilicate optical fibers are evaluated and determined to be p11=0.237±0.020 and p12=0.027±0.012, thus confirming that the low and negative pij characteristics of bulk alumina are conserved as part of a binary aluminosilicate glass system in optical fiber form. In order to enumerate these values, the strain- and stress-optic coefficients of two fibers (one with an aluminosilicate core and one with a pure silica core) were measured by applying mechanical tension or twist, respectively, to the fibers and measuring changes to an optical system as a function of the mechanical deformation. In the former, the strain-optic coefficient (εOC) is measured directly by recording changes to the free spectral range of a ring fiber laser. In the latter, the stress-optic coefficient (σOC) is found by measuring the change in polarization angle after linearly polarized light propagates through a segment of twisted test fiber. To the best of our knowledge, this is the first such measurement of its type, i.e., the retrieval of the component photoelastic constants, with their signs, of a multicomponent glass. Binary glass compositions wherein the constituents have opposite signs of the photoelastic constant (such as the aluminosilicates) have the potential to give rise to extremely low values of the Brillouin gain coefficient.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2290) Fiber optics and optical communications : Fiber materials
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2400) Fiber optics and optical communications : Fiber properties
(160.2750) Materials : Glass and other amorphous materials
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 4, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: November 16, 2012
Published: January 3, 2013

Citation
Peter D. Dragic, John Ballato, Stephanie Morris, and Thomas Hawkins, "Pockels’ coefficients of alumina in aluminosilicate optical fiber," J. Opt. Soc. Am. B 30, 244-250 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-244


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972). [CrossRef]
  2. P. D. Dragic, L. M. Little, and G. C. Papen, “Fiber amplification in the 940 nm water vapor absorption band using the F3/24→I9/24 transition in Nd,” IEEE Photonics Technol. Lett. 9, 1478–1480 (1997). [CrossRef]
  3. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009). [CrossRef]
  4. J.-P. Cariou, M. Valla, and G. Canat, “Fiber lasers: new effective sources for coherent lidars,” Proc. SPIE 6750, 675007 (2007). [CrossRef]
  5. J. E. Rothenberg, P. A. Thielen, M. Wickham, and C. P. Asman, “Suppression of stimulated Brillouin scattering in single-frequency multi-kilowatt fiber amplifiers,” Proc. SPIE 6873, 68730O (2008). [CrossRef]
  6. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15, 8290–8299 (2007). [CrossRef]
  7. P. Dragic, “SBS-suppressed, single mode Yb-doped fiber amplifiers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2009), poster session II (JThA10).
  8. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics (CLEO), Technical Digest (CD) (Optical Society of America, 2005), paper CThZ3.
  9. P. Dragic, “Brillouin suppression by fiber design,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2010), pp. 151–152.
  10. M. D. Mermelstein, “SBS threshold measurements and acoustic beam propagation modeling in guiding and antiguiding single mode optical fibers,” Opt. Express 17, 16225–16237 (2009). [CrossRef]
  11. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic waveguides,” J. Lightwave Technol. 18, 3162–3175 (2010).
  12. P. D. Dragic, P.-C. Law, and Y.-S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54, 2347–2349 (2012). [CrossRef]
  13. P. Dainese, P. St. J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388–392 (2006). [CrossRef]
  14. C. G. Carlson, R. B. Ross, J. M. Schafer, J. B. Spring, and B. G. Ward, “Full vectorial analysis of Brillouin gain in random acoustically microstructured photonic crystal fibers,” Phys. Rev. B 83, 235110 (2011). [CrossRef]
  15. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007). [CrossRef]
  16. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 627–633 (2012). [CrossRef]
  17. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105, 053110 (2009). [CrossRef]
  18. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995). [CrossRef]
  19. H. Eilers, E. Strauss, and W. Yen, “Photoelastic effect in Ti3+-doped sapphire,” Phys. Rev. B 45, 9604–9610 (1992). [CrossRef]
  20. G. O. Karapetyan, L. V. Maksimov, and O. V. Yanush, “Physical consequences of inhomogeneous glass structure from scattered light spectroscopy data,” J. Non-Cryst. Solids 126, 93–102 (1990). [CrossRef]
  21. P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45, 256–257 (2009). [CrossRef]
  22. P. D. Dragic, “Brillouin gain reduction via B2O3 doping,” J. Lightwave Technol. 29, 967–973 (2011). [CrossRef]
  23. P.-C. Law, Y.-S. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1, 686–699 (2011). [CrossRef]
  24. C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2869 (1978). [CrossRef]
  25. K. Matusita, C. Ihara, T. Komatsu, and R. Yokota, “Photoelastic effects in silicate glasses,” J. Am. Ceram. Soc. 67, 700–704 (1984). [CrossRef]
  26. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003). [CrossRef]
  27. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012). [CrossRef]
  28. A. D. Kersey, E. J. Friebele, and R. S. Weis, “Er-doped fiber ring laser strain sensor,” Proc. SPIE 1798, 280–285 (1992). [CrossRef]
  29. S. Liu, R. Gu, L. Gao, Z. Yin, L. Zhang, X. Chen, and J. Cheng, “Multilongitudinal mode fiber-ring laser sensor for strain measurement,” Opt. Eng. 50, 054401 (2011). [CrossRef]
  30. P.-C. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: the strain-optic and strain-acoustic coefficients,” Opt. Mat. Express 2, 391–404 (2012). [CrossRef]
  31. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18, 2241–2251 (1979). [CrossRef]
  32. A. Bertholds, and R. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988). [CrossRef]
  33. A. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010). [CrossRef]
  34. A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. QE-19834–839 (1983). [CrossRef]
  35. N. Kashima and T. Endou, “Wavelength dependence of stress-induced time of flight variations,” J. Opt. Commun. 27, 329–334 (2006).
  36. W. Primak and D. Post, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959). [CrossRef]
  37. R. G. Munro, “Evaluated material properties for a sintered α-alumina,” J. Am Ceram. Soc. 80, 1919–1928 (1997). [CrossRef]
  38. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 87th ed. (CRC, 2006), pp. 12–161.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited