OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 251–257

Sudden transition and sudden change of quantum discord in dissipative cavity quantum electrodynamics system

Qi-liang He and Jing-bo Xu  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 251-257 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000251


View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dynamics of classical correlation and quantum correlation of two qubits in an independent and common dissipative cavity are studied. We show that for an independent case, the quantum correlation keeps constant and the correlation relation decays before the critical time point Ωt¯. On the other hand t>Ωt¯, for the classical correlation does not change and the quantum correlation is lost. These situations demonstrate that the phenomenon of sudden transition between classical and quantum decoherence appears during the time evolution. For the common case, the quantum correlation dynamics is quite different. It is displayed that for some initial states, the quantum correlation can increase up to the critical point of time, after which it decreases, which means that the quantum correlation presents a sudden change of behavior in their decay rates. But for other initial states, the quantum correlation can keep increasing up to some-steady state value. Furthermore, we also investigate the nonzero quantum correlation between two qubits induced by the dissipation of the cavity.

© 2013 Optical Society of America

OCIS Codes
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5580) Quantum optics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 6, 2012
Revised Manuscript: November 18, 2012
Manuscript Accepted: November 19, 2012
Published: January 3, 2013

Citation
Qi-liang He and Jing-bo Xu, "Sudden transition and sudden change of quantum discord in dissipative cavity quantum electrodynamics system," J. Opt. Soc. Am. B 30, 251-257 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-251


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  3. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  4. D. A. Meyer, “Sophisticated quantum search without entanglement,” Phys. Rev. Lett. 85, 2014–2017 (2000). [CrossRef]
  5. Y. Yeo, “Local noise can enhance two-qubit teleportation,” Phys. Rev. A 78, 022334 (2008). [CrossRef]
  6. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2002). [CrossRef]
  7. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, P. Popescu, and R. Schack, “Separability of very noisy mixed states and implications for NMR quantum computing,” Phys. Rev. Lett. 83, 1054–1057 (1999). [CrossRef]
  8. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008). [CrossRef]
  9. B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White, “Experimental quantum computing without entanglement,” Phys. Rev. Lett. 101, 200501 (2008). [CrossRef]
  10. Z. Merali, “The power of discord,” Nature 474, 24–26 (2011). [CrossRef]
  11. T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, “Robustness of quantum discord to sudden death,” Phys. Rev. A 80, 024103 (2009). [CrossRef]
  12. B. Wang, Z. Y. Xu, Z. Q. Chen, and M. Feng, “Non-Markovian effect on the quantum discord,” Phys. Rev. A 81, 014101 (2010). [CrossRef]
  13. F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and A. O. Caldeira, “Non-Markovian dynamics of quantum discord,” Phys. Rev. A 81, 052107 (2010). [CrossRef]
  14. R. Vasile, P. Giorda, S. Olivares, M. G. A. Paris, and S. Maniscalco, “Nonclassical correlations in non-Markovian continuous-variable systems,” Phys. Rev. A 82, 012313 (2010). [CrossRef]
  15. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  16. M. J. Kastoryano, F. Reiter, and A. S. Søensen, “Dissipative preparation of entanglement in optical cavities,” Phys. Rev. Lett. 106, 090502 (2011). [CrossRef]
  17. V. Frank, M. W. Michael, and C. J. Ignacio, “Quantum computation and quantum-state engineering driven by dissipation,” Nat. Phys. 5, 633–636 (2009). [CrossRef]
  18. Z. Sun, X. M. Lu, and L. J. Song, “Quantum discord induced by a spin chain with quantum phase transition,” J. Phys. B 43, 215504 (2010). [CrossRef]
  19. L. Mazzola, J. Piilo, and S. Maniscalco, “Sudden transition between classical and quantum decoherence,” Phys. Rev. Lett. 104, 200401 (2010). [CrossRef]
  20. Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011). [CrossRef]
  21. R. Auccaise, L. C. Céeleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, “Environment-induced sudden transition in quantum discord dynamics,” Phys. Rev. Lett. 107, 140403 (2011). [CrossRef]
  22. J. S. Xu, X. Y. Xu, C. F. Li, C. J. Zhang, X. B. Zou, and G. C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nat. Commun. 1, 1–6(2010). [CrossRef]
  23. J. G. Peixoto de Faria and M. C. Nemes, “Dissipative dynamics of the Jaynes–Cummings model in the dispersive approximation: analytical results,” Phys. Rev. A 59, 3918–3925 (1999). [CrossRef]
  24. A. R. B. de Magalhaes, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, “Decay rate and decoherence control in coupled dissipative cavities,” Phys. A 341, 234–250 (2004). [CrossRef]
  25. M. Dukalski and Y. M. Blanter, “Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity,” Phys. Rev. A 82, 052330 (2010). [CrossRef]
  26. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A 34, 6899–6905 (2001). [CrossRef]
  27. D. W. Luo, H. Q. Lin, J. B. Xu, and D. X. Yao, “Pulse control of sudden transition for two qubits in XY spin baths and quantum phase transition,” Phys. Rev. A 84, 062112 (2011). [CrossRef]
  28. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, “Observing the progressive decoherence of the “meter” in a quantum measurement,” Phys. Rev. Lett. 77, 4887–4890 (1996). [CrossRef]
  29. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited