OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 314–318

Generating multiplexed entanglement frequency comb in a nondegenerate optical parametric amplifier

Rongguo Yang, Jing Zhang, Shuqin Zhai, Kui Liu, Junxiang Zhang, and Jiangrui Gao  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 314-318 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we propose a scheme to produce a multiplexed entanglement frequency comb in a type II phase-matching nondegenerate optical parametric amplifier (NOPA) operating below threshold. The entanglement of the signal and idler frequency combs in the wide frequency range, which is limited by the phase-matching bandwidth of the NOPA, is investigated by the inseparability criterion. Furthermore, N Einstein–Podolsky–Rosen pairs can be created from the two combs without any reduction in the correlations by using frequency-dependent beam splitters.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

Original Manuscript: June 26, 2012
Revised Manuscript: October 30, 2012
Manuscript Accepted: November 13, 2012
Published: January 9, 2013

Rongguo Yang, Jing Zhang, Shuqin Zhai, Kui Liu, Junxiang Zhang, and Jiangrui Gao, "Generating multiplexed entanglement frequency comb in a nondegenerate optical parametric amplifier," J. Opt. Soc. Am. B 30, 314-318 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using Gaussian-modulated coherent states,” Nature 421, 238–241 (2003). [CrossRef]
  3. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
  4. B. J. Meers and K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991). [CrossRef]
  5. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  6. R. J. Senior, G. N. Milford, J. Janousek, A. E. Dunlop, K. Wagner, H.-A. Bachor, T. C. Ralph, E. H. Huntington, and C. C. Harb, “Observation of a comb of optical squeezing over many gigahertz of bandwidth,” Opt. Express 15, 5310–5317 (2007). [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  8. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef]
  9. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986). [CrossRef]
  10. S. A. Diddams, L.-S. Ma, J. Ye, and J. L. Hall, “Broadband optical frequency comb generation with a phase-modulated parametric oscillator,” Opt. Lett 24, 1747–1749 (1999). [CrossRef]
  11. G. J. de Valcárcel, G. Patera, N. Treps, and C. Fabre, “Multimode squeezing of frequency combs,” Phys. Rev. A 74, 061801 (2006). [CrossRef]
  12. Y. B. Yu, S. N. Zhu, X. Q. Yu, P. Xu, J. F. Wang, Z. D. Xie, and H. Y. Leng, “Continuous-variable pair-entanglement frequency comb generated from an optical superlattice by enhanced Raman scattering,” Phys. Rev. A 77, 032317 (2008). [CrossRef]
  13. A. E. Dunlop and E. H. Huntington, “Generation of a frequency comb of squeezing in an optical parametric oscillator,” Phys. Rev. A 73, 013817 (2006). [CrossRef]
  14. D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a millihertz-linewidth laser,” Phys. Rev. Lett 102, 163601 (2009). [CrossRef]
  15. O. Pinel, P. Jian, R. Medeiros de Araujo, J. Feng, B. Chalopin, C. Fabre, and N. Treps, “Generation and characterization of multimode quantum frequency combs,” Phys. Rev. Lett 108, 083601 (2012). [CrossRef]
  16. Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012). [CrossRef]
  17. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386–1391 (1984). [CrossRef]
  18. M. G. Raymer, J. Noh, K. Banaszek, and I. A. Walmsley, “Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity,” Phys. Rev. A 72, 023825 (2005). [CrossRef]
  19. L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2722–2725 (2000). [CrossRef]
  20. J. Zhang, “Einstein-Podolsky-Rosen sideband entanglement in broadband squeezed light,” Phys. Rev. A 67, 054302 (2003). [CrossRef]
  21. E. H. Huntington, G. N. Milford, C. Robilliard, and T. C. Ralph, “Demonstration of the spatial separation of the entangled quantum sidebands of an optical field,” Phys. Rev. A 71, 041802 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited