OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 319–323

Critical behavior of nonlocal fundamental defect mode

Huafeng Zhang, Desheng Zhu, Dahai Xu, Changmei Cai, Hui Zeng, and Yonghong Tian  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 319-323 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000319


View Full Text Article

Enhanced HTML    Acrobat PDF (770 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reveal the critical behavior of the fundamental defect mode, which can be supported by an optical lattice with a local defect in the nonlocal nonlinear medium. In such a system, there are several system parameters, and it is found that whether the fundamental defect mode can locate in the defect or not depends on the parameter value higher or lower than its critical value. Furthermore, the critical values of these parameters are predicted in this article.

© 2013 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 10, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 6, 2012
Published: January 9, 2013

Citation
Huafeng Zhang, Desheng Zhu, Dahai Xu, Changmei Cai, Hui Zeng, and Yonghong Tian, "Critical behavior of nonlocal fundamental defect mode," J. Opt. Soc. Am. B 30, 319-323 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef]
  2. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386(1998). [CrossRef]
  3. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003). [CrossRef]
  4. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, “Two-dimensional optical lattice solitons,” Phys. Rev. Lett. 91, 213906 (2003). [CrossRef]
  5. D. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903 (2004). [CrossRef]
  6. H. Buljan, O. Cohen, J. W. Fleischer, T. Schwartz, M. Segev, Z. H. Musslimani, N. K. Efremidis, and D. N. Christodoulides, “Random-phase solitons in nonlinear periodic lattices,” Phys. Rev. Lett. 92, 223901 (2004). [CrossRef]
  7. Z. Xu, Y. V. Kartashov, and L. Torner, “Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett. 30, 3171–3173 (2005). [CrossRef]
  8. J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A. Malomed, D. J. Frantzeskakis, and Z. Chen, “Necklacelike solitons in optically induced photonic lattices,” Phys. Rev. Lett. 94, 113902 (2005). [CrossRef]
  9. S. López-Aguayo, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Method to generate complex quasinondiffracting optical lattices,” Phys. Rev. Lett. 105, 013902 (2010). [CrossRef]
  10. H. Leblond, B. A. Malomed, and D. Mihalache, “Spatiotemporal vortex solitons in hexagonal arrays of waveguides,” Phys. Rev. A 83, 063825 (2011). [CrossRef]
  11. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  12. Y. V. Kartashov, S. López-Aguayo, V. A. Vysloukh, and L. Torner, “Stripe-like quasi-nondiffracting optical lattices,” Opt. Express 19, 9505–9511 (2011). [CrossRef]
  13. D. M. Jović, Y. S. Kivshar, C. Denz, and M. R. Belić, “Anderson localization of light near boundaries of disordered photonic lattices,” Phys. Rev. A 83, 033813 (2011). [CrossRef]
  14. F. Fedele, J. Yang, and Z. Chen, “Defect modes in one-dimensional photonic lattices,” Opt. Lett. 30, 1506–1508 (2005). [CrossRef]
  15. A. Szameit, Y. V. Kartashov, M. Heinrich, F. Dreisow, T. Pertsch, S. Nolte, A. Tunermann, F. Lederer, V. A. Vysloukh, and L. Torner, “Observation of two-dimensional defect surface solitons,” Opt. Lett. 34, 797–799 (2009). [CrossRef]
  16. W. H. Chen, Y. J. He, and H. Z. Wang, “Surface defect gap solitons,” Opt. Express 14, 11271–11276 (2006). [CrossRef]
  17. X. Zhu, H. Wang, and L.-X. Zheng, “Defect solitons in kagome optical lattices,” Opt. Express 18, 20786–20792 (2010). [CrossRef]
  18. Z. Lu and Z.-M. Zhang, “Surface line defect solitons in square optical lattice,” Opt. Express 19, 2410–2416 (2011). [CrossRef]
  19. V. A. Brazhnyi and B. A. Malomed, “Localization and delocalization of two-dimensional discrete solitons pinned to linear and nonlinear defects,” Phys. Rev. E 83, 016604 (2011). [CrossRef]
  20. S. Hu, X. Ma, D. Lu, Y. Zheng, and W. Hu, “Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity,” Phys. Rev. A 85, 043826 (2012). [CrossRef]
  21. Z. Lu and Z. Zhang, “Defect solitons in parity-time symmetric superlattices,” Opt. Express 19, 11457–11462 (2011). [CrossRef]
  22. S. V. Dmitriev, S. V. Suchkov, A. A. Sukhorukov, and Y. S. Kivshar, “Scattering of linear and nonlinear waves in waveguide array with a PT-symmetric defect,” Phys. Rev. A 84, 013833 (2011). [CrossRef]
  23. J. Wang, Z. Ye, A. Miller, Y. Hu, C. Lou, P. Zhang, Z. Chen, and J. Yang, “Nonlinear beam deflection in photonic lattices with negative defects,” Phys. Rev. A 83, 033836(2011). [CrossRef]
  24. J. Yang and Z. Chen, “Defect solitons in photonic lattices,” Phys. Rev. E 73, 026609 (2006). [CrossRef]
  25. L. Dong and F. Ye, “Shaping solitons by lattice defects,” Phys. Rev. A 82, 053829 (2010). [CrossRef]
  26. Z. Xu, Y. V. Kartashov, and L. Torner, “Soliton mobility in nonlocal optical lattices,” Phys. Rev. Lett. 95, 113901(2005). [CrossRef]
  27. W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller, “Modulational instability in nonlocal nonlinear Kerr media,” Phys. Rev. E 64, 016612 (2001). [CrossRef]
  28. J. Wyller, W. Krolikowski, O. Bang, and J. J. Rasmussen, “Generic features of modulational instability in nonlocal Kerr media,” Phys. Rev. E 66, 066615 (2002). [CrossRef]
  29. H. Zhang, D. Xu, and L. Li, “An approximate solution for describing a fundamental soliton in nonlocal nonlinear media,” J. Opt. A 11, 125203 (2009). [CrossRef]
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Relaxation methods,” in Numerical Recipes in Fortran 77: The Art of Scientific Computing (Cambridge University, 2001), pp. 753–763.
  31. Z. Xu, Y. V. Kartashov, and L. Torner, “Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media,” Opt. Lett. 30, 3171–3173 (2005). [CrossRef]
  32. M. L. Chiofalo, S. Succi, and M. P. Tosi, “Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm,” Phys. Rev. E 62, 7438–7444 (2000). [CrossRef]
  33. W. Bao, I.-L. Chern, and F. Yin Lim, “Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates,” J. Comput. Phys. 219, 836–864 (2006). [CrossRef]
  34. G. P. Agrawal, “Split-step Fourier method” in Nonlinear Fiber Optics, 4th ed (Academic, 2006), pp. 41–45.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited