OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 324–327

Indefinite permittivity in KTP single crystal at infrared frequency

Hongya Wu, Jingbo Sun, Ji Zhou, Bo Li, and Longtu Li  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 324-327 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarized reflectivity of potassium titanyl phosphate (KTiOPO4, KTP) single crystal was measured in infrared frequency with the electronic field of the incident wave polarized parallel and perpendicular, respectively, to the c axis. The permittivity dispersions of KTP single crystal were obtained by the fitting of the reflectivity spectra. The permittivity dispersions indicate that KTP single crystal exhibits five frequency intervals where the crystal exhibits contrary signs between ε and ε. This means, in these frequency intervals, the natural existing crystal exhibits the properties of an indefinite media which is based on the anisotropic lattice vibration. However, these lattice vibrations cause a large loss.

© 2013 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5710) Instrumentation, measurement, and metrology : Refraction
(130.0250) Integrated optics : Optoelectronics

ToC Category:
Integrated Optics

Original Manuscript: October 26, 2012
Manuscript Accepted: December 5, 2012
Published: January 9, 2013

Hongya Wu, Jingbo Sun, Ji Zhou, Bo Li, and Longtu Li, "Indefinite permittivity in KTP single crystal at infrared frequency," J. Opt. Soc. Am. B 30, 324-327 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  5. M. G. Silveirinha, C. R. Medeiros, C. A. Fernandes, and J. R. Costa, “Experimental verification of broadband superlensing using a metamaterial with an extreme index of refraction,” Phys. Rev. B 81, 033101 (2010). [CrossRef]
  6. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  7. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11, 746–754 (2003). [CrossRef]
  8. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulo, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef]
  9. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  10. S. Zhang, W. Fan, K. J. Malloy, and S. R. J. Brueck, “Demonstration of metal–dielectric negative-index metamaterials with improved performance at optical frequencies,” J. Opt. Soc. Am. B 23, 434–438 (2006). [CrossRef]
  11. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  12. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, and M. H. Tanielian, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84, 3232–3234 (2004). [CrossRef]
  13. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef]
  14. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008). [CrossRef]
  15. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  16. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal–dielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  17. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: negative refraction and focusing,” Phys. Rev. B 79, 245127 (2009). [CrossRef]
  18. Y. Gao, J. P. Huang, Y. M. Liu, L. Gao, K. W. Yu, and X. Zhang, “Optical negative refraction in ferrofluids with magnetocontrollability,” Phys. Rev. Lett. 104, 034501 (2010). [CrossRef]
  19. Y. Zhang, B. Fluegel, and A. Mascarenhas, “Total negative refraction in real crystals for ballistic electrons and light,” Phys. Rev. Lett. 91, 157404 (2003). [CrossRef]
  20. Y. Lu, P. Wang, P. Yao, J. Xie, and H. Ming, “Negative refraction at the interface of uniaxial anisotropic media,” Opt. Commun. 246, 429–435 (2005). [CrossRef]
  21. L. Kang, Q. Zhao, B. Li, and J. Zhou, “Experimental verification of a tunable optical negative refraction in nematic liquid crystals,” Appl. Phys. Lett. 90, 181931 (2007). [CrossRef]
  22. G. E. Kugel, F. Brehat, B. Wyncke, M. D. Fontana, G. Marnier, C. C. Nedelec, and J. Mangin, “The vibrational spectrum of a KTiOPO4 single crystal studied by Raman and infrared reflectivity spectroscopy,” J. Phys. C: Solid State Phys. 21, 5565–5583 (1988). [CrossRef]
  23. Q. Jiang, M. N. Womersley, and P. A. Thomas, “Ferroelectric, conductive, and dielectric properties of KTiOPO4 at low temperature,” Phys. Rev. B 66, 094102 (2002). [CrossRef]
  24. J. H. Park, B. C. Choi, and J. B. Kim, “Electrical properties of KTiOPO4 single crystal in the temperature range from −100°C to 100°C,” Solid State Commun. 130, 533–536 (2004). [CrossRef]
  25. P. Urenski, N. Gorbatov, and G. Rosenman, “Dielectric relaxation in flux grown KTiOPO4 and isomorphic crystals,” J. Appl. Phys. 89, 1850–1855 (2001). [CrossRef]
  26. K. Noda, W. Sakamoto, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4 (KTP) single crystals at low temperature,” J. Mater. Sci. Lett. 19, 69–72 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited