OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 328–332

Absolute frequency measurement of the molecular iodine hyperfine transitions at 548 nm

Yu-Chen Hsiao, Cheng-Yang Kao, Hsuan-Chen Chen, Shih-En Chen, Jin-Long Peng, and Li-Bang Wang  »View Author Affiliations


JOSA B, Vol. 30, Issue 2, pp. 328-332 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000328


View Full Text Article

Enhanced HTML    Acrobat PDF (640 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report absolute frequency measurement of the molecular iodine P(28) 24-0 a1, a10, and a15 hyperfine transitions at 548 nm. The light source is based on a frequency-doubled fiber amplifier system seeded by an external cavity diode laser. Saturated absorption is performed by modulation transfer spectroscopy, and the absolute transition frequency is measured by an optical frequency comb. The effects of pressure shift and pressure broadening are discussed. Our determination of the line centers reaches a precision of better than 20 kHz. This light source can be used as a reference laser for lithium ion spectroscopy.

© 2013 Optical Society of America

OCIS Codes
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Spectroscopy

History
Original Manuscript: August 30, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: December 13, 2012
Published: January 14, 2013

Citation
Yu-Chen Hsiao, Cheng-Yang Kao, Hsuan-Chen Chen, Shih-En Chen, Jin-Long Peng, and Li-Bang Wang, "Absolute frequency measurement of the molecular iodine hyperfine transitions at 548 nm," J. Opt. Soc. Am. B 30, 328-332 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-2-328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J.-M. Chartier, S. Fredin-Picard, and L. Robertsson, “Frequency-stabilized 543 nm He–Ne laser systems: a new candidate for the realization of the metre?” Opt. Commun. 74, 87–92 (1989). [CrossRef]
  2. W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I2127 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363–369 (2001). [CrossRef]
  3. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003). [CrossRef]
  4. L. Chen, W.-Y. Cheng, and J. Ye, “Hyperfine interactions and perturbation effects in the B0u+(Πu3) state of I2127,” J. Opt. Soc. Am. B 21, 820–832 (2004). [CrossRef]
  5. J. Zhang, Z. H. Lu, and L. J. Wang, “Absolute frequency measurement of the molecular iodine hyperfine components near 560 nm with a solid-state laser source,” Appl. Opt. 48, 5629–5635 (2009). [CrossRef]
  6. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17, 1652–1659 (2009). [CrossRef]
  7. S. L. Cornish, Y.-W. Liu, I. C. Lane, P. E. G. Baird, G. P. Barwood, P. Taylor, and W. R. C. Rowley, “Interferometric measurements of I2127 reference frequencies for 1S–2S spectroscopy in muonium, hydrogen, and deuterium,” J. Opt. Soc. Am. B 17, 6–10 (2000). [CrossRef]
  8. L.-B. Wang, P. Mueller, K. Bailey, G. W. F. Drake, J. P. Greene, D. Henderson, R. J. Holt, R. V. F. Janssens, C. L. Jiang, Z.-T. Lu, T. P. O’Connor, R. C. Pardo, K. E. Rehm, J. P. Schiffer, and X. D. Tang, “Laser spectroscopic determination of the He6nuclear charge radius,” Phys. Rev. Lett. 93, 142501 (2004). [CrossRef]
  9. G. Ewald, W. Nörtershäuser, A. Dax, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, R. Sanchez, A. Wojtaszek, B. A. Bushaw, G. W. F. Drake, Z.-C. Yan, and C. Zimmermann, “Nuclear charge radii of Li8,9 determined by laser spectroscopy,” Phys. Rev. Lett. 93, 113002 (2004). [CrossRef]
  10. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I2127spectrum,” Eur. Phys. J. D 19, 31–44 (2002). [CrossRef]
  11. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2 B–X spectrum,” Eur. Phys. J. D 28, 199–209 (2004). [CrossRef]
  12. W. A. van Wijngaarden, “Precision measurements of fine and hyperfine structure in lithium I and II,” Can. J. Phys. 83, 327–337 (2005). [CrossRef]
  13. T. Zelevinsky, D. Farkas, and G. Gabrielse, “Precision measurement of the three 23PJ helium fine structure intervals,” Phys. Rev. Lett. 95, 203001 (2005). [CrossRef]
  14. C. J. Sansonetti, C. E. Simien, J. D. Gillaspy, J. N. Tan, S. M. Brewer, R. C. Brown, S. Wu, and J. V. Porto, “Absolute transition frequencies and quantum interference in a frequency comb based measurement of the Li6;7 D Lines,” Phys. Rev. Lett. 107, 023001 (2011). [CrossRef]
  15. K. Pachucki, “Improved result for helium 23S1 ionization energy,” Phys. Rev. Lett. 84, 4561–4564 (2000). [CrossRef]
  16. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936). [CrossRef]
  17. J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, “Highly stable, frequency-controlled mode-locked erbium fiber laser comb,” Appl. Phys. B 86, 49–53 (2006). [CrossRef]
  18. M. Nakazawa, “Phase-sensitive detection on Lorentzian line shape and its application to frequency stabilization of lasers,” J. Appl. Phys. 59, 2297–2305 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited