OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 2 — Feb. 1, 2013
  • pp: 333–337

Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann–Raether experiment

Damien Brissinger, Laurent Salomon, and Frédérique De Fornel  »View Author Affiliations

JOSA B, Vol. 30, Issue 2, pp. 333-337 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



With the aim of studying electromagnetic surface wave resonance, we rigorously solve the homogeneous and inhomogeneous problem associated with an optically excited thin metallic film. We then demonstrate unambiguously that the excited eigenmode engendering plasmonic resonance in the so-called Kretschmann–Raether configuration is an unguided mode (i.e., with an anti-evanescent structure). This result, challenging the classical interpretation of the outgoing wave condition applied to surface waves, permits a quantitative interpretation of the attenuated total reflection curves.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: October 10, 2012
Revised Manuscript: December 6, 2012
Manuscript Accepted: December 9, 2012
Published: January 14, 2013

Damien Brissinger, Laurent Salomon, and Frédérique De Fornel, "Unguided plasmon-mode resonance in optically excited thin film: exact modal description of Kretschmann–Raether experiment," J. Opt. Soc. Am. B 30, 333-337 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  2. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of non radiative plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136(1968).
  4. A. Otto, “Excitation of non-radiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik 216, 398–410 (1968). [CrossRef]
  5. L. Salomon, G. Bassou, H. Aourag, J. P. Dufour, F. de Fornel, F. Carcenac, and A. V. Zayats, “Local excitation of surface plasmon polaritons at discontinuities of a metal film: theoretical analysis and optical near-field measurements,” Phys. Rev. B 65, 125409 (2002). [CrossRef]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polariton,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  7. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface PlasmonsAdvances in Nano-Optics and Nano-Photonics Series (Elsevier, 2007).
  8. S. A. Maier, Plasmonics, Fundamentals and Applications (Springer, 2007).
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  10. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  11. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  12. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  13. A. Passian, A. L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, and T. L. Ferrell, “Imaging standing surface plasmons by photon tunnelling,” Phys. Rev. B 71, 165418 (2005). [CrossRef]
  14. A. L. Lereu, A. Passian, R. H. Farahi, N. F. van Hulst, T. L. Ferrell, and T. Thundat, “Thermoplasmonic shift and dispersion in thin metal films,” J. Vac. Sci. Technol. A 26, 836–841 (2008). [CrossRef]
  15. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000). [CrossRef]
  16. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal Chem 74, 696–701 (2002). [CrossRef]
  17. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, “Modulation of multiple photon energies by use of surface plasmons,” Opt. Lett. 30, 41–43 (2005). [CrossRef]
  18. P. M. Adam, L. Salomon, F. de Fornel, and J. P. Goudonnet, “Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunneling microscope,” Phys. Rev. B 48, 2680–2683 (1993). [CrossRef]
  19. T. Wakamatsu and K. Saito, “Interpretation of attenuated-total-reflection dips observed in surface plasmon resonance,” J. Opt. Soc. Am. B 24, 2307–2313 (2007). [CrossRef]
  20. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]
  21. Y. Gravel and Y. Sheng, “Rigorous solution for the transient surface plasmon polariton launched by subwavelength slit scattering,” Opt. Express 16, 21903–21913 (2008). [CrossRef]
  22. A. Archambault, F. Marquier, J.-J. Greffet, and C. Arnold, “Quantum theory of spontaneous and stimulated emission of surface plasmons,” Phys. Rev. B 82, 035411 (2010). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
  24. A. S. B.-B. Dhia and P. Joly, “Mathematical analysis and numerical approximation of optical waveguides,” in Mathematical Modeling in Optical Science, G. Bao, L. Cowsar, and W. Masters, eds., Frontiers in Applied Mathematics Series (SIAM, 2001), pp. 273–324.
  25. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  26. J. G. Kovacs, “Optical excitation of surface plasmon-polaritons in layered media,” in Electromagnetic Surface Modes, A. D. Boardman, ed. (Wiley, 1982), pp. 143–200.
  27. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  28. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  29. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001). [CrossRef]
  30. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005). [CrossRef]
  31. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberg, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30, 893–895 (2005). [CrossRef]
  32. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  34. M. R. Spiegel, Theory and Problems of Laplace Transforms (McGraw-Hill, 1985).
  35. Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2006), pp. 247–265.
  36. A. Neogi, C. W. Lee, H. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablanovich, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). [CrossRef]
  37. M. Thomas, J.-J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85, 3863–3865 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited